

Outline

- 1. BP modelling
- 2. Requirements on BP flexibility
- 3. Situational method engineering
- 4. The proposed approach
- 5. Conclusion and future work

1. Process modelling

Definitions

- BP is a set of one or more linked procedures or activities that collectively realise a business objective or policy goal, normally within the context of an organisational structure defining functional roles and relationships. [Workflow Management Coalition,95]
- BP modelling consists on capturing the organisational knowledge according to various perspectives with respect to the modeling purpose and the situation

1. Process modelling

Modelling Perspectives [BPMDS'06 workshop], [Daoudi et al., 07], [Nurcan, 08], [van der Aalst, 03]

- □ Functional: «what» process must do?
- Organisational: «where», «by whom» and «under the responsibility of whom » the activities are realised?
- Behavioral: «when» the activities are realised and how they are controlled by constraints
- □ Informational: the business objects used by the process, their structure and the relationships established between them
- Operational: the operations and the activities performed during the process
- □ Intentional: « why » the process is performed?
- Decisional: «how» the decisions are made? the rationality of the decisions

Process nature

- □ The a priori knowledge of the execution
 - Definition of the procedural rules in advance
 - In the literature, two types of processes are distinguished
 - □ Well structured processes (eg. Production processes)
 - □ III structured / unstructured processes (eg. ad-hoc processes)
- □ Stability / evolution of the process
 - Stable processes
 - Evolutive processes

Modelling formalisms

Activity-oriented and product-oriented formalisms

- Focus on executability and translatability into executable languages (e.g. BPEL4WS or ebXML)
- Are suitable for representing situations in which execution conditions are well known in advance
- Describe who performs WHAT and HOW in details
- □ Provide a rigid scheduling of activities
- □ Examples : role-activity diagrams [Ould, 1995], state-transition diagrams [MOF,02]

1. Process modelling

Modelling formalisms

Role / Actor oriented formalisms

□ Highlight the responsibilities of actors in the organisation

Responsibility, right, obligation, …

Reflect the organisational structure

- Communication, dependency, action, interaction between actors, responsibility distribution
- □ Etc.
- Examples : I* [Yu, Mylopoulous, 94], role interaction networks [Singh et al., 1992]

1. Process modelling

Modelling formalisms

- Goal, decision, strategy, intention oriented formalisms
 - □ Focus on the objectives of the organisation, the decision making, the actors' points of views, etc.
 - □ WHY ?

Exemples :

- I* [Yu, Mylopoulous, 94]
- KAOS [Heaven, Finkelstein, 04]
- Nature [Rolland, 95]
- MAP [Rolland et al., 99]

+ / - Providing guidance for satisfying goals

+ / - Dealing with different levels of granularity

2. Requirements of flexibility

These modelling formalisms

- Allow to capture different perspectives of the process knowledge
- Are complementary and can be combined in order to satisfy various modelling purposes
 - Combination of activity-oriented and product-oriented formalisms in order to determine which activity acts on which product
 - Combination of goal-oriented and activity-oriented formalisms in order to specify the operationalisation of goals

→ A unique modelling formalism can not be adequate for all situations

2. Requirements of flexibility

There is a need for mechanisms allowing :

- the adaptation and
- the configuration

of existing formalisms according to the context

- > Internal context
 - Process nature
 - □ Modelling purposes
 - $\hfill\square$ Points of views, and/or preferences of actors
 - □ Etc.
- External context
 - □ Execution environment (instances performance)
- A process model can be flexible only if the formalism (meta-model) used to represent it integrates the capability to represent flexibility
- Creation of formalisms which are adapted to the current modelling needs (context)

- Method engineering is the discipline of developing, customising, and/or configuring a situation-specific method from parts of existing methods [Brinkkemper, 96], [Leppanen, 2006]
- Principles of ME : meta modelling, flexibility, reuse and modularity [Rolland, 2007]
- SME promotes the construction of a method by assembling reusable method fragments stored in some method base [Brinkkemper, 98], [Ralyte et al., 2001]

SME :

- Construction of new methods or adaptation of existing ones in order to satisfy the requirements of a given ISD project
- Dealing with flexibility and adaptability needs
- → Thus, we will base our reasoning for situation aware BP modelling on SME techniques 11

Source : Colette Rolland talk in ME'07

4. The proposed approach

Motivations

- One formalism is not sufficient even for a unique perspective
- The is a need for adaptation and configuration mechanisms
- A BP can be analysed according to multiple perspectives depending on the engineering and the execution contexts

→ Construction of modelling formalisms which are adapted to the context

4. The proposed approach

Formalism Consists on a set of reusable components named chunks

Chunks

- Rather than defining a complete set of concepts in one meta model, a taxonomy of concepts will be defined
- Grouping concepts according to various configurations in order to construct specific chunks
- Reuse of chunks in the construction of new chunks
 - Extension
 - Assembly
 - Etc..
- □ A chunk base supporting research and extraction operations
- → Thus, the process engineer can select or construct a meta-model which better fits with the project situation and the underlying modelling purpose

Construction operators

- ADD (Element, link, property)
- DELETE (Element, link, property)
- GENERALISE / SPECIALISE (Element)
- UNIFY (Element, link, property)
- MERGE (Element, link, property)
- Etc.

(element, link, property)

Example 1

Extension-based strategy

Example 1

The meta-model of PM₁

Extension-based strategy

19

4. The proposed approach

The meta-model of CxPM₀

Extension-based strategy

4. The proposed approach

Example 2

Assembly-based strategy

4. The proposed approach

4. The proposed approach Example

Intentional view

5. Conclusion and future work

- A starting point for defining an approach of configuration and adaptation of meta-models for BP modelling taking into consideration the purpose and the context of modelling
- Applying techniques and principles of SME
 - □ Proposing the concept of *chunk* in the definition of a meta-model (formalism)
 - □ Capturing different needs of representation in terms of method chunks
 - □ Constructing the resulting meta-model based on the set of chunks in order to fit with the context and the purpose of modelling
 - → Allowing the meta-models to be configurable
- Future work
 - Capturing the context knowledge which impact the selection of the adequate chunk / meta-model
 - A complete taxonomy of operators of assembly, adaptation and extension
 - The process of construction of meta-models

27

Thank you for your attention

Oumaima.Saidani@univ-paris1.fr, Selmin.Nurcan@univ-paris1.fr