Meta-model tailoring for Situation aware BP Modelling

Oumaima Saidani* et Selmin Nurcan**

* Centre de Recherche en Informatique
 + IAE de Paris

Université Paris 1 – Panthéon - Sorbonne

Outline

1. BP modelling
2. Requirements on BP flexibility
3. Situational method engineering
4. The proposed approach
5. Conclusion and future work
1. Process modelling

Definitions

- **BP** is a set of one or more linked procedures or activities that collectively realise a business objective or policy goal, normally within the context of an organisational structure defining functional roles and relationships. [Workflow Management Coalition, 95]

- **BP modelling** consists on capturing the organisational knowledge according to various perspectives with respect to the modeling purpose and the situation.

Modelling Perspectives [BPMDS’06 workshop], [Daoudi et al., 07], [Nurcan, 08], [van der Aalst, 03]

- **Functional**: «what» process must do?
- **Organisational**: «where», «by whom» and «under the responsibility of whom» the activities are realised?
- **Behavioral**: «when» the activities are realised and how they are controlled by constraints
- **Informational**: the business objects used by the process, their structure and the relationships established between them
- **Operational**: the operations and the activities performed during the process
- **Intentional**: «why» the process is performed?
- **Decisional**: «how» the decisions are made? the rationality of the decisions
Process nature

- The a priori knowledge of the execution
 - Definition of the procedural rules in advance
 - In the literature, two types of processes are distinguished
 - Well structured processes (e.g. Production processes)
 - Ill structured / unstructured processes (e.g. ad-hoc processes)

- Stability / evolution of the process
 - Stable processes
 - Evolutive processes

Modelling formalisms

- **Activity-oriented and product-oriented formalisms**
 - Focus on executability and translatability into executable languages (e.g. BPEL4WS or ebXML)
 - Are suitable for representing situations in which execution conditions are well known in advance
 - Describe who performs WHAT and HOW in details
 - Provide a rigid scheduling of activities
 - **Examples**: role-activity diagrams [Ould, 1995], state-transition diagrams [MOF,02]
Modelling formalisms

- **Role / Actor oriented formalisms**
 - Highlight the responsibilities of actors in the organisation
 - Responsibility, right, obligation, …
 - Reflect the organisational structure
 - Communication, dependency, action, interaction between actors, responsibility distribution
 - Etc.
 - Examples: I* [Yu, Mylopoulos, 94], role interaction networks [Singh et al., 1992]

- **Goal, decision, strategy, intention oriented formalisms**
 - Focus on the objectives of the organisation, the decision making, the actors’ points of views, etc.
 - WHY ?
 - Examples:
 - I* [Yu, Mylopoulos, 94]
 - KAOS [Heaven, Finkelstein, 04]
 - Nature [Rolland, 95]
 - MAP [Rolland et al., 99]

 + / - Providing guidance for satisfying goals
 + / - Dealing with different levels of granularity
These modelling formalisms

- Allow to capture different perspectives of the process knowledge
- Are complementary and can be combined in order to satisfy various modelling purposes
 - Combination of activity-oriented and product-oriented formalisms in order to determine which activity acts on which product
 - Combination of goal-oriented and activity-oriented formalisms in order to specify the operationalisation of goals

> A unique modelling formalism can not be adequate for all situations

There is a need for mechanisms allowing:
- the adaptation and
- the configuration
 of existing formalisms according to the context

- **Internal context**
 - Process nature
 - Modelling purposes
 - Points of views, and/or preferences of actors
 - Etc.

- **External context**
 - Execution environment (instances performance)

- A process model can be flexible only if the formalism (meta-model) used to represent it integrates the capability to represent flexibility

> Creation of formalisms which are adapted to the current modelling needs (context)
Method engineering is the discipline of developing, customising, and/or configuring a situation-specific method from parts of existing methods [Brinkkemper, 96], [Leppanen, 2006]

Principles of ME: *meta modelling, flexibility, reuse and modularity* [Rolland, 2007]

SME promotes the construction of a method by assembling reusable method fragments stored in some method base [Brinkkemper, 98], [Ralyte et al., 2001]

SME:
- Construction of new methods or adaptation of existing ones in order to satisfy the requirements of a given ISD project
- Dealing with flexibility and adaptability needs

Thus, we will base our reasoning for situation aware BP modelling on SME techniques

Strategies of methods composition

Emphasis on composition strategies (classification by Ralyté & Rolland)

- **Assembly based**
 - [Diagram: Green + Blue = Green]

- **Extension based**
 - [Diagram: Green = Green]

- **Paradigm based**
 - [Diagram: Green + Blue = Blue]

Motoshi Saeki talk in EMISE

Source: Colette Rolland talk in ME’07
4. The proposed approach

Motivations

- One formalism is not sufficient even for a unique perspective
- There is a need for adaptation and configuration mechanisms
- A BP can be analysed according to multiple perspectives depending on the engineering and the execution contexts

→ Construction of modelling formalisms which are adapted to the context

Formalism

- Consists on a set of reusable components named chunks

Chunks

- Rather than defining a complete set of concepts in one meta-model, a taxonomy of concepts will be defined
- Grouping concepts according to various configurations in order to construct specific chunks
- Reuse of chunks in the construction of new chunks
 - Extension
 - Assembly
 - Etc..
- A chunk base supporting research and extraction operations

→ Thus, the process engineer can select or construct a meta-model which better fits with the project situation and the underlying modelling purpose
Construction operators

- ADD (Element, link, property)
- DELETE (Element, link, property)
- GENERALISE / SPECIALISE (Element)
- UNIFY (Element, link, property)
- MERGE (Element, link, property)
- Etc.

(example, link, property)

Example 1

Extension-based strategy
4. The proposed approach

Example 1
Extension-based strategy

Process Model (PM)

PM₀

PM₁

The meta-model of PM₀
4. The proposed approach

The meta-model of PM$_1$

The meta-model of CxPM$_0$
4. The proposed approach

The metamodel of CxPM

Example 2

Assembly-based strategy
4. The proposed approach

Example 2

Cadre conceptuel pour la modélisation des processus métier et de leur système de support

- Intentional view
- Operational and Organisational view
- Support system view
4. The proposed approach

Example

- **Strategic view**
 - **Belongs to**
 - **Acts on**

- **Business goal**
 - **Reaches**
 - **Comprises**
 - **Participates**

- **Business process**
 - **Includes**

- **Organizational unit**
 - **Belongs to**

- **Role**
 - **Can play**
 - **Can hold**

- **Actor**
 - **Participates**

- **Operation**
 - **Acts on**
 - **Comprises**

- **BP fragment**
 - **Makes operational**
 - **Includes**

Assembly-based strategy

- **Unify_elements**
- **Merge_elements**

Chunk 1

- **Guideline**
- **Section**
- **Business intention**

Chunk 2

- **Business map**
- **Strategy**

Intentional view
5. Conclusion and future work

- A starting point for defining an approach of configuration and adaptation of meta-models for BP modelling taking into consideration the purpose and the context of modelling

- Applying techniques and principles of SME
 - Proposing the concept of chunk in the definition of a meta-model (formalism)
 - Capturing different needs of representation in terms of method chunks
 - Constructing the resulting meta-model based on the set of chunks in order to fit with the context and the purpose of modelling
 - Allowing the meta-models to be configurable

- Future work
 - Capturing the context knowledge which impact the selection of the adequate chunk / meta-model
 - A complete taxonomy of operators of assembly, adaptation and extension
 - The process of construction of meta-models

Thank you for your attention

Oumaima.Saidani@univ-paris1.fr, Selmin.Nurcan@univ-paris1.fr