

A Unified Framework for Modeling Cooperative Design Processes and Cooperative
Business Processes

Colette Rolland, Selmin Nurcan, Georges Grosz
Université Paris 1 - Panthéon - Sorbonne, Centre de Recherche en Informatique

17, rue de Tolbiac, 75013 Paris, FRANCE, email : {rolland, nurcan, grosz}@univ-paris1.fr

Abstract
We look at any cooperative design process as a decision

making process, i.e. a non deterministic process. The
process is performed by responsible agents having the
freedom to decide how to proceed according to their
assessment of the situation they are faced to. However, the
cooperative design process cannot be an ad-hoc and
chaotic process. We look at it as a repeatable process
made of steps resulting each of the application of the same
pattern for decision making. The pattern views a decision
as a choice of the way to proceed in a given situation to
achieve an intention. An intention can be fulfilled in
different ways depending on the situation being
considered. We propose a process meta-model for
describing such a pattern of decision making. This meta-
model can also be used for modeling cooperative business
processes whether well structured or ill-structured. In
order to deal with a wide range of cooperative processes,
we propose a single process meta-model which provides
the structuredness of the predefined models and the
flexibility of ill-structured processes.

1. Introduction

It is traditional to look to any engineering activity from

both the product point of view and the process points of
view. The product is the desired result, the process is the
route followed to reach the result. Methods were
classically focused on the product aspect of systems
development and have paid less attention to the description
of formally defined ways-of-working which could be
supported by CASE environments. Clearly, there is a high
need for methods and tools which offer process guidance
to provide advice on which activities are appropriate under
which situations and how to perform them [1 ,2 ,3 ,4]. We
propose a way-of-working which intends to provide such
guidance.

Our approach is composed of three complementary
elements :
(1) a set of models used for describing the system to be
constructed and the organization in which it will operate,
(2) a way-of-working supporting the usage of concepts,
(3) a set of tools supporting the way-of-working.

This paper focuses on the presentation of the way-of-
working which enables the cooperative design process
management on a basis of a method rather than on
intuition. It aims at organizing and structuring the design
process. It provides advice on what should be considered

during this process (goals, roles, etc.), why and how it
should be analyzed (goal decomposition, role dependency
study, etc.) following some relevant techniques
(brainstorming, SWOT analysis, etc.). It also suggests
which problem should be tackled next and provides some
argument to help in the making of the most appropriate
design decision. Finally, it includes means to support
cooperative design processes and cooperative business
processes including brainstorming, exchange and
emergence of ideas. Due to the tool support, some process
automation is possible and tracing facilities emphasize the
recording of the rationale and argumentation provided
throughout the process.

This approach, called EKD (Enterprise Knowledge
Development), is currently being applied, in the ESPRIT
project ELEKTRA1 [5] for reorganizing electricity
companies and designing new solutions.

This paper is organized as follows: Section 2 presents
the cooperative process meta-model. Section 3 focuses on
EKD way-of-working for cooperative design. Section 4
presents the guidance offered by the EKD process. Section
5 illustrates the use of the presented meta-model for
describing both cooperative design processes and
cooperative business processes.

2. The cooperative process meta-model

We distinguishes three levels of process modeling :
-At the instance level, process traces are recorded. A

process is a description of the route followed to construct a
product or a service. The output of a process is a product,
it can be a requirements specification, a conceptual
schema, a service to a client in an organization or a set of
business goals. A process and its related product are
specific to an application.
-At the type level, ways-of-working are defined. A way-of-
working is a process model, i.e. a description of process. It
is an anticipation of what the process will look like. A
process is then, an instantiation of a process model. A
process model is specific to a method.
-At the meta-type level, we define the generic concepts
used to represent any process model. Along with their
relationships, those concepts constitute the process meta-
model. Ways-of-working are therefore, instances of the
process meta-model. A process meta-model is method
independent.

1 This work is supported by the ESPRIT project ELEKTRA (N° 22927)
founded by the EEC in the context of the Framework 4 Programme.

As we shall see in section 3.1, these three levels can be
used to provide guidance at three different levels of
abstraction, the domain specific level, the method-specific
level, and the generic level, respectively.

We propose a meta-model as a basis for cooperative
process model definition [1, 6, 7]. The process meta-model
allows us to deal with many different situations in a
flexible, decision-oriented manner. Moreover, it can
support different levels of granularity in decision making
as well as non-determinism in process performance. It
identifies a decision in context as the basic building block
of ways-of-working and permits their grouping into
meaningful modules. Parallelism of decisions and ordering
constraints are also supported.

In this section, we present first the basic process model
developed in [1]. In paragraph 2.4 we introduce extensions
to deal also with cooperative processes.

2.1. The concept of context

 The central concept of the process meta-model is the
one of context (figure 1) which associates a situation with
an intention. A situation is a part of the product it makes
sense to take a decision on. Situations can be of various
granularity levels; they can be either atomic like an
attribute of an object class or they can be coarse-grained
like the whole object schema. A decision reflects a choice
that a user can make at a given moment in the process. A
decision refers to an intention. An intention expresses what
the user wants to achieve.

 A context is the association of a situation and an
intention. Acting in a context corresponds to a step in the
process. That is, when placed in a given situation, and in
order to progress in the process, the user has to take a
decision referring to an intention (figure 1).

2.2. The different types of contexts

A situation exists at different levels of granularity.
Further, decisions have consequences which differ from
one granularity level to another. The different contexts are
classified (figure 1) according to their consequences in the
meta-model into executable contexts, plan contexts, and
choice contexts.

2.2.1. Executable context. At the most detailed level, the
execution of any process can be seen as a set of
transformations performed on the product, each
transformation resulting from the execution of a
deterministic action. Such an action is a consequence of a
decision made in a certain context. This leads to the
introduction of the concept of an executable context.

An executable context (figure 2) implements a decision,
its intention is realized by an action. Therefore, in the
meta-model (figure 1), an executable context is associated
with an action. An action performs a transformation of the
product, it is the implementation of a decision. Performing
an action changes the product and may generate a new
situation which is itself, subject to new decisions. The
action can be complex or simple. A complex action is
composed of actions. A simple action changes the product
by creating, updating or deleting it.

2.2.2. Choice context. A user may have several alternative
ways to fulfill a decision. Therefore, he/she has to select
the most appropriate one among the set of possible
choices. In order to model such a piece of process
knowledge, we use a second specialization of the concept
of context, namely the choice context (figure 3).

A choice context corresponds to a situation which
requires the exploration of alternatives in decision making.
Each alternative is an approach or a strategy for the
resolution of the issue being faced by the user in the
current situation. By definition, a choice context offers a
choice among a set of strategies, all of them achieving the
same intention.

In the process meta-model, the various alternatives of a
choice context are represented in the alternative
relationship (figure 3). They are associated to choice
criteria based on arguments.

A choice criterion is a combination of arguments which
supports or objects to an alternative of a choice context. It
may provide priority rules to select one alternative among
several depending on the arguments.

Since alternatives of a choice context are also contexts,
contexts may share an alternative relationship (figure 3),
leading to alternative-based hierarchies of contexts. The
alternative-based relationship among contexts allows the
refinement of large-grained decisions into more fine-
grained ones. This is one of the means by which the
process meta-model handles the granularity problem
(figure 4).

Figure 1 : The concept of Context

Figure 2. Example of an executable context

Figure 3. The representation of the concept of context

The notions of alternatives and choice criteria allow
the way-of-working to support the user in exploring and
selecting the most appropriate strategy to resolve an issue.

2.2.3. Plan context. In order to fulfill an intention
associated to a certain situation, a user may be required to
take a set of decisions on corresponding situations; he/she
has to follow a plan. To this end, a third specialization of
context, namely, plan context is introduced. A plan context
is an abstraction mechanism by which a context viewed as
a complex issue can be decomposed in a number of sub-
issues. Each sub-issue corresponds to a sub-decision
working on a sub-situation. The decomposition of context
is another means provided by the meta-model to solve the
granularity problem.

The component contexts can be of any type, i.e. ex-
ecutable, choice or plan. For example, for the intention
named "Process_Request" to be fulfilled, the three inten-
tions "Analyse_Request", "Adapt_Request" and
"Create_Reservation" must be satisfied. This is modeled
(fig. 5) by a plan called : "<(Request + Resources), Proc-
ess_Request>", it is decomposed into three contexts:
"<(Adapted Request + Resources), Analyse_Request>", and
"<(Analysed Request + Resources), Create_Reservation>"
executable contexts, and "<(Request + Resources),
Adapt_Request>" choice context.

In the process meta-model the decomposition of a plan
context into its more elementary contexts is represented
(figure 3) by the relationship precedence graph between
context and plan context. The ordering of the contexts,
within a plan, is defined by the precedence graph. The
nodes of this graph are contexts while the links -called
precedence links- define either the possible ordered
transitions between contexts or their possible parallel
enactment. Based on arguments, a choice criterion may be
assigned to a link. The choice criterion defines when the
transition can be performed. Flexibility is introduced by
allowing several sets of possible parallel or ordered
transitions to be defined in the same graph.

Decomposition of contexts can be made iteratively
leading to hierarchies of contexts linked by the
decomposition link. Notice that this link corresponds in
figure 3 to the composition of the precedence graph
relationship with the from and to relationships.

Each type of context influences the on-going process in
a different manner: an executable context affects the
product and generates a new situation, which itself
becomes the subject of decisions; a choice context does not
change the product but helps to further the decision making
process through the refinement of an intention; a plan
context provides the means to manage the complexity of an
intention by providing a decomposition mechanism.
Performing decomposition and refinement iteratively
allows the users to reach executable intentions and thus, to
act on the product.

2.3. The structure of way-of-working

Contexts in the meta-model have hierarchical
relationships of two types, decomposition and refinement.
In the way-of-working, we suggest a grouping based upon
these links. The modules resulting from this grouping are
hierarchies of contexts called trees. A way-of-working can
be composed of several trees. This leads to the final vision
of a way-of-working as a forest of trees (figure 6).

ContextTreeForest

composed
of

1,N 1,N 1,N 1,N

composed
of

2.4. Extensions to deal with cooperative processes

According to the process meta-model, acting in a

context should correspond to a step in the cooperative
process. Since there are a number of participating users in
cooperative processes who discuss and work with one
another, there is need to have specific provision for the
conversational action in the process meta-model.
Additionally, since users play different roles in
organizations and participate in the cooperative process
from the point of view of this role, it is necessary to
explicitly bring the notion of a role in the meta-model.

2.4.1. The concept of role. A role is the definition of an
organizational intention shared by a collection of users, all
of whom have the same privileges and obligations to a set
of work processes in an organization. For example, the role
of a reservation service clerk, that of an accounts officer,
etc. In a given situation, a user has an intention (because of
his/her role in this process), and that makes him/her
progress in the cooperative process.

To this end, we introduce the concept of role, and then
specialize it into individual role and group role (figure 7).
For example, the reservation service clerk is an individual
role whereas public relations team is a group role. A group
role contains several individual roles.

We attach the context of the process meta-model to a
role. This captures knowledge about which decision can be
taken by which role. Therefore, the basic division of
responsibility in cooperative processes is imposed on the
set of decisions of the meta-model. This helps us in
representing coordination of roles, providing access
control, and in giving more appropriate guidance which is
completely tailored to the role.

2.4.2. Specialization of the action and product concepts.
We classify actions into two types (figure 8): individual
action and conversation action.

Figure 4. Example of a choice context

Figure 5. Example of a plan context

Figure 6. The way-of-working structure

Figure 7. The context is attached to a role

Individual actions perform transformations of artifacts
while conversation actions create messages. Therefore, we
classify the concept of product into artifact and message
(figure 8). Artifact represents the objects of the information
system. To keep track of conversations, we introduce the
message concept as the basic component of the
conversational activity. A message may concern several
artifacts.

Figure 9 shows an executable context which is applied
by an individual action. An individual action is performed
by an individual role (figure 10).

We want also to deal with group activities, in the sense
that several participants can synchronously act in the same
activity by exchanging messages. We represent this type of
cooperation by the conversation action. The conversation
action is performed by a group role. It creates several
messages, each message being produced by an individual
role contained by the previous group role (figure 10). New
contexts may emerge from any conversation action (figure
10). These contexts can be executable and associated to
actions, which may themselves be conversa-tional. These,
in turn, trigger new contexts and so on.

2.5. Highlights

For many organizations, well-structured and ill-

structured procedures coexist in work processes and must
be managed in the final solution which describes the
organization [6]. Allowing the description of both ill and
well-structured procedures within a single process meta-
model aims to make transition between different types of
group activities transparent. This requires homogeneity and
coherence of handled concepts.

An instantiation of the cooperative process meta-model
results in a cooperative process model allowing to deal
with a large variety of situations in a decision-oriented
manner.

The concept of plan context enables the cooperative
process meta-model to deal with well-structured
cooperative processes which require the use of a control
model [6, 7]. The corresponding precedence graph defines
the ordering of the component contexts and, consequently,
the coordination of the various roles.

The alternative-based guidance of the choice context
leaves freedom to users who can make a choice which may

not even be one of the predefined alternatives proposed by
the way-of-working. This feature allows the cooperative
process meta-model to deal with exception handling in
cooperative processes.

The concept of conversation action allows the
cooperative process meta-model to deal with ill-structured
cooperative processes and the unstructured component of
globally well-structured cooperative processes.

We believe that what we just introduced consists in the
minimal necessary set of concepts required to describe
cooperative processes. Indeed, these concepts constitute
the basic and could extended toward specific requirements
or use (e.g. : role hierarchy).

Figure 10. The cooperative process meta-model

3. The way-of-working for cooperative design

3.1 The process is guided

This section introduces our view of cooperative design

processes, the concepts and paradigm underlying the EKD
way-of-working and how processes are guided. First, we
look to any cooperative design process as a decision
making process, i.e. a non deterministic process. The
process is performed by responsible agents having the
freedom to decide how to proceed according to their
assessment of the situation they are faced to. Agents do not
necessarily follow a predefined plan of actions.
Cooperative design requires a number of decisions to be
made, on what to consider in the existing organization, on
the study of alternative solutions, on the selection of the
most appropriate solution, etc..

Secondly, the cooperative design process cannot be an
ad-hoc and chaotic process. We look at it as a repeatable
process made of steps resulting each of the application of
the same pattern for decision making. The proposed EKD
way-of-working is entirely based on this pattern.

Third, the pattern views a decision as the choice of the
way to proceed in a given situation to achieve an intention.
In terms of the cooperative process meta-model, a decision
is contextual in the EKD approach. An intention can be
fulfilled in different ways depending on the situation being
considered.

Figure 8. Actions and products that they transform

Figure 9. An executable context according to the
cooperative process meta-model

Therefore, if we visualize the pattern (figure 11) as
having an input, a body and an output, then input is a
couple <situation, intention> , i.e. a context.

Each application of the pattern in a specific EKD
process will deal with a specific input, i.e. a specific
context. The output of the EKD decision making pattern is
either a modified product or new contexts.

The body of the decision making pattern provides the
knowledge to make the decision In other words, the pattern
is intended to provide guidance on how to proceed to
achieve the intention in the given situation. The body
makes use of the different types of knowledge as follows:

Domain specific knowledge: heuristical knowledge
which partly constitutes the know-how of EKD engineers.

EKD knowledge: knowledge independent of any
particular domain but specific to EKD. For instance, while
classifying a goal, an engineer refers to some existing and
well understood classifications, the elements guiding
his/her selection of the appropriate class are known "a
priori", they are reused for the classification of every goal.
This type of knowledge is specific to EKD and can be used
in any organizational setting.

Generic knowledge: when an engineer has to solve a
new design problem, he/she could structure his/her
reasoning by looking for alternative ways to solve the
problem or by decomposing the problem into smaller
problems. This type of knowledge is fully generic and not
tailored to EKD.

The decision making pattern is tailored to always
provide guidance: the domain specific knowledge is the
more accurate whereas the generic knowledge is the
default guiding option; the EKD knowledge providing
support dedicated to the use of the specific EKD models.

These three types of guidance can be related to the
levels of abstraction introduced in section 2. Generic
guidance is at the meta-model level; EKD guidance is at
the model level and domain specific guidance relates to the
process level [8] .

Decision making might require emergence of ideas,
exploration of choices, argumentation of various
alternatives and perhaps deliberation among the
stakeholders involved in the process. Section 4.1 shall
demonstrate how the generic decision making pattern takes
these aspects into account .

3.2. The process is incremental and dynamic

The suggested way-of-working makes the EKD process

cyclic, each step of the process repeats the EKD decision
making pattern. As a consequence, the product which is the
target of the process (i.e. the new company organization of
its business processes) is incrementally constructed. In
addition, the sequencing of steps is not fixed a priori. Steps
dynamically follow one another. The dynamicity is brought
by the decision making pattern which does not impose any
predefined ordering in the decision making process but

allows the EKD engineers to switch from one context to
another depending on changed situations and intentions.

3.3. The process is supported by software tools

The way the EKD environment provides guidance in

the performance of the process can be explained using the
Dowson's framework [9]. The framework introduces three
interacting domains: process modeling, process
performance and process enactment. The process
modeling domain captures all activities performed for
modeling software development processes: process model
definition, process model specialization, etc.. The process
enactment domain encompasses what takes place in a
process to support process performance based on the
process definitions. This is essentially an interpretation of
an instantiated process model that guides, enforces or
partly automates process performance. The relationship
between the process modeling and the process enactment
domains is the instantiation of the process model. The
instantiated model is then used within the process
enactment domain for supporting process performance.
The process performance domain is defined as the set of
activities conducted by human agents and non human
agents (e.g. computer). The relationship between the
process performance and the process enactment domain is
twofold. On the one hand, the process enactment domain
supports, controls and monitors the activities of the process
performance domain. On the other hand, the process
performance domain provides feedback on process
performance, to enable process adjustment.

The process model supporting the EKD way-of-
working comprises three classes of process model
fragments; each of them being adapted to the three types of
guidance introduced in section 3.1. We call them method
chunks, and therefore the cooperative design environment
uses generic method chunks, EKD method chunks and
domain specific method chunks. All chunks are stored in
the library of the EKD environment and are accessible at
any moment during process performance.

4. Guidance in EKD process

4.1. Generic guidance

The method knowledge library comprises only one

generic guideline that we refer to as the generic method
chunk or simply generic chunk.

The chunk is applicable in situations where the two
other types of guidelines do not hold. The guideline aims
to fulfill the goal called "progress". It proposes a help
strategy for progressing in the EKD process which offers
four options: first, do, plan and choose, each of them
corresponding to a given type of context, executable, plan
and choice context, respectively (see section 2).
• The do option corresponds to a straight-forward
resolution strategy. It should be chosen when the method
engineer knows exactly what needs to be done in order to
fulfill the context's intention. The engineer is required to
specify the design action(s) and their effects on the design

Figure 11. The EKD decision making pattern

product. We call this type of context executable, its
intention can be directly implemented through actions.
• The choose option corresponds to a resolution strategy
which requires the exploration of alternative paths. It
should be selected when the method engineer thinks about
different alternative ways for progressing with regard to
the input context but has not make up his/her mind about
the one to select. The generic chunk proposes to specify all
possible alternative paths and to elaborate an argument for
each of them in order to choose. Based on the proposed
arguments, the enactment leads to the selection of the
alternative path which looks the most appropriate. The
initial context is said a choice context.
• The plan option follows a planning strategy. The method
engineer has in mind a plan for achieving the context's
intention and will progress by building a plan of decisions
to be made. The enactment consists of plan execution. The
initial context is called a plan context.

Note that the two last options correspond to the
classical reduction operator in the problem reduction
approach to problem solving [10].

However, parts of the EKD process are dealing with
wicked and ill-defined problems for which even the
generic guidance provided by the decision making pattern
might be found too inflexible. The discovery of goals is an
example. Setting the opportunities, weaknesses, threats and
strengths for a design process to occur is another example.
As pointed out in [11, 12, 13], finding goals is very hard
and no efficient way of solving this problem is known.
Organizing cooperative work and brainstorming sessions is
probably the most adapted approach to deal with this kind
of highly creative activity in order to make ideas emerge.
The problem is therefore, to be able within the EKD way-
of-working, to support both ill-structured and well (or
better)-structured processes.

In order to take into account the cooperative work, we
complete the generic chunk by a fourth strategy called
brainstorm (figure 12). This strategy is supported by the
argument "the current situation requires cooperative
brainstorming". The associated alternative is an executable
context <input context, use the brainstorm strategy>
leading to the execution of the conversation action within
the required group role and having the initial input context
as situation. The EKD engineer selects this strategy when
he/she cannot achieve alone the input intention, for
example, "Operationalize goal".

4.2. EKD guidance

EKD guidance is based on EKD knowledge, i.e.

knowledge specific to EKD. This is knowledge for
supporting EKD engineers to specifically undertake the
cooperative design process in an organization using the
EKD models.

The EKD knowledge supports for example, the con-
struction of the different models representing the initial

enterprise state (the initial product) as well as the future
enterprise state of the organization (the design product),
the expression of alternative strategies for design, the
evaluation of these strategies, as well as other kinds of
activity such as brainstorming, cooperative work, etc..

We express this knowledge as we did for generic
knowledge, i.e. using the process meta-model and the
different types of context. However there is one major
difference : the EKD knowledge is expressed at the type
level, i.e. the level of specific classes of EKD phenomena
such as "identifying goals", "operationalizing goals",
"finding design models meeting specific goals", etc..

More generally, the EKD knowledge can be reused for
decision based guidance in many different cooperative
design processes within different companies. An EKD
method chunk is reusable any time the situation type
matches elements of a specific product and the intention
type matches the current intention of the EKD engineer.

The enactment of the decision making pattern at the
EKD level is similar to what we have illustrated for ge-
neric guidance. The main difference lies in the retrieval of
the method chunk. The retrieval of an EKD chunk is based
on matching: Assuming that the engineer has chosen the
input context, he/she has to select an EKD method chunk
where (1) the situation type matches the input context's
situation and (2) the intention of the method chunk
matches the input context's intention. This selection is
greatly facilitated by the use of a software tool. The
remaining part of the reasoning loop associated to the
application of the EKD decision making pattern is similar
to what we presented for using the generic knowledge but
the EKD engineer is more guided:

- the tactics is provided by the EKD method chunk. The
EKD engineer is only required to instantiate the method
chunk. He does not have himself to find the way of
resolving the issue he is faced to, but he is just required to
follow the predefined resolution approach provided by the
chunk. If the method chunk is a choice context, the EKD
engineer will have to instantiate the alternative contexts
whereas he/she will do the same for the component
contexts of a plan; he does not have anything to do at this
stage if the context is executable.

- the enactment is identical to what we presented ear-
lier. The EKD engineer makes decisions according to the
predefined tactics, i.e. selecting the most appropriate al-
ternative based on the arguments provided by the method
chunk (again the arguments are predefined and do not need
to be formulated by the engineer) in case of a choice
context; selecting the adequate path in the precedence
graph to execute a plan context and performing the
action(s) of an executable context to modify the design
product accordingly to the decision made.

We use a matrix presentation to overview the
collection of chunks included in the EKD knowledge
library. The columns of the matrix are intentions which
arise during the EKD process, the rows of the matrix are
techniques used in the guidelines and the chunks are the
matrix elements.

There are 5 main intentions [14]: (1) Model the current
enterprise state ; (2) Acquire goal ; (3) Operationalize
goal ; (4) Generate design models ; (5) Validate design
models. Some of them are decomposed into a number of

Figure 12. The generic method chunk

sub-intentions which are visualized in the matrix as sub-
columns. For example, "Find goal", "Classify goal",
"Prioritize goal", "Detect goal conflict", "Solve goal
conflict" are sub-intentions of "Acquire goal".

The same technique can be used in different ways in
different chunks. For example, brainstorming strategy is a
technique which might be used for satisfycing the intention
of "Detect goal conflict" and for "Solve goal conflict" as
well. The SWOT analysis might be used for satisfycing the
intention of "Analyze the context of cooperative design"
and for "Argument alternative design models".

The essential benefit the EKD engineer gains in using
EKD method chunks relates to guidance. By following the
heuristical knowledge embedded in the method chunk, the
engineer is constantly guided. Part of the solution he/she
has to find is provided by the chunk. Suggestions are made
on the alternative strategies he/she can follow, predefined
arguments supporting or objecting to these strategies are
provided, predefined plans he/she can use for reaching
his/her decision are ready-made, he/she is told what to do
next, etc..

4.3. Domain specific guidance

EKD domain specific guidance is based on EKD

domain specific knowledge. The domain specific
knowledge aims at providing guidance to EKD engineers
for solving very well focused problems related to a specific
domain. It is based on experience and suggests to reuse and
possibly to adapt already tested solutions of the same
domain. The use of domain specific knowledge within the
EKD decision making pattern is very close to what has
been presented in section 4.2 for EKD guidance. The
difference lies in the fact that domain specific method
chunks are defined at the instance level and therefore do
not have to be instantiated while being used.

The reasoning loop starts with the retrieval of the
domain specific chunk matching the input context. This
can be done manually by the EKD engineer who browses
through the knowledge library and looks for a chunk
whose situation is the input context's situation and the
intention is the input context's intention. It is more easily
done with the use of the EKD tool environment which
realizes the matching automatically. If there exists such a
matching chunk, the EKD engineer can decide to use it.

The chunk provides the tactics for making the decision.
Because domain specific chunks are defined at the instance
level, there is no need for context instantiation (as for EKD
method chunks). Then the engineer has just to enact the
guideline provided.

The following section illustrates the use of our
framework for modeling a cooperative design process and
the cooperative business process resulting from it as its
product.

5. Modeling cooperative design processes and
the resulting cooperative business processes

Figure 13 illustrates a chunk for "goal reduction" as a

tree of contexts in the EKD knowledge library (see section
4.2) guiding the reduction at different level of details. For

the sak eof clarity, the name of the role is not mentioned, it
is always « EKD engineer ».

At the first level, the chunk proposes three alternative
strategies in order to reduce a goal [12]:

- a milestones-driven strategy (1),
- a case-driven strategy (2),
- an agent-driven strategy (3).

 (1) The milestones-driven strategy is applicable when the
satisfaction of the goal is associated with milestones. The
goal reduction consists in identifying the milestones, the
corresponding sub-goals and to perform an AND reduction
with these sub-goals. This is modeled as a plan context.
 (2) The case-driven strategy offers choices which
correspond to its possible alternative sub-strategies. It is
therefore, modeled as a choice context. This strategy is
applicable when an exhaustive list of cases in which the
goal has to hold can be identified and the work to be
achieved is different for each case.

Each alternative is modeled as a plan context
describing the goal reduction using :
- dependent situations; this reduction is based on the
analysis of the organizational situation associated to the
goal and should be selected when sub-situations dependent
one from the other can be identified. These situations often
correspond to possibly successive states of one of the
objects involved in the situation.
- independent situations; in this case the situation as
mentioned before can be decomposed into independent
sub-situations, often exclusive states of the involved
object.

Figure 13. The chunk for goal reduction

- independent intentions; the reduction in this case is based
on the goal itself and its target and on the identification of
independent sub-intentions which are required for the goal
to be satisfied. Another view of this alternative is to reason
in terms of parallel work steps to achieve the goal.
- dependent intentions; as in the previous case, the
reasoning supporting the reduction looks to the goal itself
and identifies ordered work steps with dependent
intentions.
(3) The agent-driven strategy is modeled as a choice
context. Indeed, there are several alternative ways to apply
this strategy.

Each alternative is a plan context describing the goal
reduction using :
- scheduled cooperation; this strategy is applicable when
contributions of the agents have to be structured according
to a schedule so that each sub-goal concerns disjoint roles.
- agent abilities; this strategy is applicable when the goal
can be decomposed into sub-goals each of them fitting
some ability of a specific role without any need for
scheduling.

Let us illustrate the use of the "Reduce goal" method
chunk using the following air traffic control example :
<(Goal: "No passenger should miss his/her connection"),
Reduce goal>

Figure 14 illustrates the goal reduction structure
obtained by applying iteratively the method chunk
"Reduce goal" for the input context <(Goal: "No passenger
should miss his/her connection"), Reduce goal>. An
indication in bold mentions the strategy whose selection
led to the goal structure. Let us now comment the step by
step enactment of the chunk leading to this goal reduction
structure.

Assume first, that the EKD engineer selects the
alternative <(Goal: "No passenger should miss his/her
connection"), use a case-driven strategy> supported by the
argument "one can identify an exhaustive list of cases in
which the goal has to hold".

Secondly, the enactment of this choice context leads to
the selection of the most adequate alternative which is a
plan context <(Goal: "No passenger should miss his/her
connection"), use independent situations> supported by the
argument "the intention of this goal must be achieved in
independent situations (corresponding to the exclusive
states of landing)".

Thirdly, the enactment of the plan context <(Goal: "No
passenger should miss his/her connection"), reduce the
goal using independent situations> leads to reduce the goal
using a choice context with two alternatives: no passenger
should miss his/her connection when the plane lands on
time, and no passenger should miss his/her connection
when the plane is late.

These two new goals are to be reduced in turn.
The goal "No passenger should miss his/her connection

when plane on time" is reduced using an agent-driven
strategy based on scheduled cooperation; this is supported
by the argument "contributions of the agents are structured
according to some schedule so that each sub-goal concerns
disjoint roles". The consequence is an AND reduction
between the following sub-goals : inform passenger during
flight, set up ground staff support, and speed-up check-in.

Figure 14. The goal reduction structure for the goal « No passenger

should miss his/her connection »

Thus, there are three new goals to be reduced in turn.
The goal "set up ground staff support" is reduced using

a case-driven strategy based on independent situations
supported by the argument "the intention of this goal must
be achieved in different and independent situations
(exclusive states of landing)". The consequence is an OR
reduction between the following sub-goals :
set up ground staff support for connection with same
company in the same terminal
set up ground staff support for connection with same
company in different terminals
set up ground staff support for connection with different
companies in the same terminal
set up ground staff support for connection with different
companies in different terminals

Then, four new goals to be reduced in turn. Each of
them is reduced using an agent-driven strategy based on
agent abilities.

The goal "set up ground staff support for connection
with same company in the same terminal" is reduced in
two sub-goals by an AND reduction : inform passenger on
direction, and assure correct baggage transfer.

The goal "set up ground staff support for connection
with same company in different terminals" is reduced in
three sub-goals by an AND reduction : inform passenger
on shuttle connection and direction, assure correct shuttle
functioning, and assure correct baggage transfer.

The goal "set up ground staff support for connection
with different companies in the same terminal" is reduced
in two sub-goals by an AND reduction : inform passenger
on direction and speed-up baggage claim.

The goal "set up ground staff support for connection
with different companies in different terminals" is reduced
in three sub-goals by an AND reduction : speed-up

baggage claim, inform passenger on shuttle connection
and direction, and assure correct shuttle functioning.

This structure obtained by the reduction of the goal "No
passenger should miss his/her connection" provides at the
same time the high level description of a business process
called "connection" in an airport. This process (see figure
15) has a well-known goal "No passenger should miss
his/her connection in this airport". We do not include roles
in the corresponding process model in order to not load too
much the figure.

Figure 15. The model of the cooperative business process

"connection"

6. Related work

Our proposal subsumes within it, at least six different

approaches to process modeling:
(1) Activity-oriented approaches: Some activity-oriented
process models (e.g. Waterfall [15], Spiral [16], Fountain
[17]) are coarse-grained and aim to organize the software
life-cycle. This is simply represented by a plan context.
The precedence graph of the plan enables the definition of
several alternative paths in this organization.
(2) In process centred environments (e.g. [18]), new
activity based process models are fine-grained. The
process meta-model allows through decomposition and
refinement to model the process at different levels of
granularity and therefore can handle the fine-coarse
descriptions supported by software centred environments.
However, unlike process models of these environments
which concentrate on modeling the part of the process

where activities are mainly executed by tools, the EKD
process meta-model aims at offering means for supporting
creative activities performed by human beings as well. It
seems that purely activity centred models are not
semantically powerful enough to achieve such a goal.
(3) Similarly to decision oriented process models (e.g.
[19]), we look upon the cooperative design process as a
decision making process. Like in IBIS [20], decisions are
motivated by positions which are themselves supported or
objected by arguments. The concepts of arguments and
choice criteria we propose are borrowed to this approach.
We extend the concept of decision to the one of context by
relating decisions to the situations in which they are made.
Further more, in DAIDA [19], the only mechanism
proposed to describe a process model is by decision
decomposition. The alternative ways of fulfilling a
decision cannot be modeled as choice contexts do.
(4) In workflow models (e.g.[21,22]), a production process
is described as a sequence of activities (component
processes) constrained with a control flow. However,
component processes are modeled as black boxes. No
direct action on a product is undertaken. In our approach,
we organize the content of processes by ordering the
component of processes into a dependency graph which
allows to describe iteration, back track as well as
parallelism between processes.
(5) In situated process modeling [23], processes are
described as sets of chunks whose invocation is not fixed
in advance but based on the specification status. In the
EKD process, we extend the notion of EKD product in
order to provide a number of strategies for guiding the
EKD engineer. For instance, guidance can be based on past
decisions.
(6) Finally, we can relate the classic AND/OR graphs for
planning used in the artificial intelligence community [10]
to hierarchies of contexts. The "AND graphs" are similar
to plan contexts whereas the "OR graphs" are similar to
choice contexts. We enrich these graphs with the concepts
of arguments and choice criteria and therefore provide a
means for guiding the requirements engineer to make the
appropriate decision.

7. Conclusion

In order to deal with a wide range of cooperative

processes, we proposed a single process meta-model which
provides the structuredness of the predefined models and
the flexibility of ill-structured processes. The cooperative
process meta-model allows:
• to represent cooperative design processes,
• to represent cooperative business processes,
• to improve their modeling by introducing heuristics that
facilitate knowledge expression,
• to integrate conversations between actors into modeling
and to make new goals emerge.

The EKD decision making pattern is a reasoning
mechanism supporting decision making by providing a set
of predefined concepts, a library of guidelines and a set of
predefined rules. The concepts identify the elements
supporting the reasoning; the two key concepts are the
ones of context and product. The rules play a double role.
First, they help in the retrieval of the appropriated

guideline from the library supporting decision making at
that particular stage of the process, i.e. in the current
situation at hand. Second, rules are used to guide the
decision making according to the guideline.

The decision making pattern is tailored to provide
guidance in all cases. In some cases, the pattern offers a
domain specific guidance. This happens when the library
contains knowledge about the domain of the project which
matches the current context of work.

The library contains EKD specific guidelines which are
tailored to the way the EKD approach suggests to work
with the different EKD models. Such guidelines suggest,
for instance, different techniques for supporting the
emergence of goals, the operationalization of goals, the
classification of goals etc.. These guidelines are
independent of any particular domain but are based on
EKD method knowledge.

Finally, if none of the two previous types of guidelines
matches the current context of work, the generic guideline
may operate. It is a generic rule for supporting decision
making in cooperative design processes when neither EKD
specific guidelines nor domain specific guidelines apply.
Clearly, the more specific the guidance provided is, the
more efficient it is. However, the generic guideline, by
offering a general frame for decision making, makes the
EKD process entirely based on guidance.

References

[1] C. Rolland, et Al., "An Approach for Defining Ways-of-
Working", Information Systems Journal, Vol. 20, No 4,1995.
[2] C. Rolland, "Understanding and Guiding Requirements
Engineering Processes", invited talk, IFIP World Congress,
Camberra, Australia, 1996
[3] M. Dowson, and C. Fernstrom, "Towards requirements for
Enactment Mechanisms", Proc. of the th European Workshop on
Software Process Technology, 1994.
[4] J. D. Wynekoop, N. L. Russo, "System Development
methodologies: unanswered questions and the research-practice
gap", Proc. of 14th ICIS (eds. J. I. DeGross, R. P. Bostrom, D.
Robey), Orlando, USA, 1993, pp. 181-190.
[5] "ELectrical Enterprise Knowledge for TRansforming
Applications", The ELEKTRA Project Programme, ELEKTRA
consortium, 1996.

[6] S. Nurcan, C. Gnaho, and C. Rolland, "Defining Ways-of-
Working for Cooperative Work Processes", Proc. of the First
International Conference on Practical Aspects of Knowledge
Management (PAKM) Workshop on Adaptive Workflow, Basel,
Switzerland, October 30-31, 1996.
[7] S. Nurcan, and C. Rolland, "Meta-modeling for cooperative
processes", Proc. of the 7th Euro-Japanese Conf. on Information
Modellling and Knowledge Bases, Toulouse, France, May 27-30,
1997.
[8] C. Rolland, S. Nurcan, and G. Grosz, "Guiding the
participative design process", Asso. for Information Systems
Americas Conf., Indianapolis, Indiana, Aug. 1997, pp. 922-924.

[9] M. Dowson, "Consistency Maintenance in Process Sensitive
Environments", Proc. of the Process Sensitive SEE Architecture
Workshop, Boulder, CO. September 1992.
 [10] N. Nilsson, "Problem Solving Method in Artificial
Intelligence", McGrawHill, 1971.
[11] C. Potts, "A Generic Model for Representing Design
Methods ", Proc. 11th Int. Conf. on "Soft. Engineering", 1989.
[12] A. Dardenne, A.v. Lamsweerde, and S. Fickas, "Goal-
directed Requirements Acquisition", Science of Computer
Programming, Vol. 20, 1993, pp. 3-50.
[13] A. Anton, "Goal-Based Requirements Analysis", ICRE '96,
IEEE, Colorado Springs, Colorado USA, 1996, pp. 136-144.
 [14] C. Rolland, S. Nurcan, and G. Grosz, "A way-of-working for
change processes", Int. Research Symposium: Effective
Organisations, Dorset, UK, September 4-5, 1997, pp. 201-204.
[15] Royce W. W. : "Managing the Development of Large
Software Systems"; Proc. IEEE WESCON 08/1970
[16] B. Boehm, "A Spiral Model of Software Development and
Enhancement", IEEE Computer 21, 5, 1988.
[17] : Henderson-Sellers B., Edwards J. M. ; "The Object-
oriented Systems Life-Cycle"; Comm. of the ACM, 09, 1990.
[18] L. Jacherri, J. O. Larseon, R. Conradi, "Software Process
Modeling and Evolution in EPOS", in Proc. of the 4th Int. Conf.
on Software Engineering and Knowledge Engineering
(SEKE'92), Capri, Italy, 1992, pp574-589.
[19] M. Jarke, J. Mylopoulos, J. W. Schmidt, Y. Vassiliou,
"DAIDA - An Environment for Evolving Information Systems";
ACM Trans. on Information Systems, Vol. 10, No. 1, 1992.
[20] Conklin, E.J. and Begeman, M. : gIBIS: A Hypertext Tool for
Exploratory Policy Discussion, ACM Transactions on Office
Information Systems, Vol. 6, No. 4, 1988, pp. 303-331.
[21] Winograd T. : "A Language/Action Perspective on the
Design of Cooperative Work", In Human Computer Interaction, 3
(1°, pp 3-30, 1987-88.
[22] Gulla J.A., Lindland O.I. : "Modeling Cooperative Work for
Workflow Management", in Proc. of the Int. Conf CAiSE94,
Utrecht, The Netherlands, pp53-65, 1994.
[23] Rolland C., Cauvet C. : "ALECSI : An Expert System for
Requirements Engineering", in "Advanced IS Engineering", R.
Andersen, J Bubenko, A. Solvberg (Eds), Springer Verlag, 1991.

