
 
 
 
 
 
 
 

REFSQ’03 
 

PRE-PROCEEDINGS 
 
9th International Workshop on 
REQUIREMENTS ENGINEERING 
- FOUNDATION FOR SOFTWARE QUALITY 
 
In conjunction with CAiSE'03 
16 -17 June 2003, Klagenfurt/Velden, Austria 
 
Program Co-Chairs:  
Camille Salinesi - Ben Achour,  
Björn Regnell,  
Erik Kamsties  
 
 
www.refsq.org 
 

REFSQ



  



Table of Contents  
Session 1 : Requirements Elicitation 
P01. Elicitation of Requirements from User Documentation.................................................................. 3 
Isabel John, Jörg Dörr  
 
P02. Creating Requirements - Techniques and Experiences in the Policing Domain........................... 13 
Lucinda Pennel, Neil A. M. Maiden  
 
P03. Eliciting Efficiency Requirements with Use Cases ...................................................................... 23 
Jörg Dörr, D. Kerkow, Antje von Knethen, Barbara Paech  
 
P04. Post-Release Analysis of Requirements Selection Quality An Industrial Case Study.................. 33 
Lena Karlsson, Björn Regnell, Joachim Karlsson, Stefan Olsson  
 

Session 2 : Requirements Dependencies 
P05. Modeling Dependencies between Variation Points in Use Case Diagrams .................................. 43 
Stan Bühne, Günter Halmans, Klaus Pohl  
 
P06. Requirements Interdependencies - Moulding the State of Research into a Research Agenda...... 55 
Åsa G. Dahlstedt, Anne Persson  
 
P07. A Relation-based Approach to Use Case Analysis ...................................................................... 65 
Alessandro Fantechi, Stefania Gnesi, Giuseppe Lami  
 

Session 3 : RE Processes 
P08. Requirements Engineering for Data Warehousing ....................................................................... 75 
Mohamed Frendi, Camille Salinesi  
 
P09. Introduction and Application of a Lightweight Requirements Engineering Process Evaluation 
Method  ................................................................................................................................................. 83 
Tony Gorschek, Mikael Svahnberg, Kaarina Tejle  
 

Session 4 : Problem Frames 
P10. From Process Model to Problem Frame - A Position Paper ........................................................ 93 
Karl Cox, Keith Phalp  
 
P11. A Requirements-based Framework for the Analysis of Socio-technical System Behaviour  ...... 97 
Jon G. Hall, Andrés Silva  
 
P12. The Simulator; Another, Elementary Problem Frame ?  ............................................................ 101 
Ian K Bray, Karl Cox 
 

Session 5 : Non-Functional Requirements 
P13. A Reuse-based Approach to  Determining Security Requirements ........................................... 105 
Guttorm Sindre, Donald G. Firesmith, Andreas Opdahl   
 
P14. A Framework for Modeling Privacy Requirements in Role Engineering .................................. 115 
Qingfeng He, Annie I. Antón   



2



3

Elicitation of Requirements from User Documentation  

Isabel John,  Jörg Dörr 

Fraunhofer Institute for Experimental Software Engineering (IESE) – Kaiserslautern - Germany 
 {john; doerrj}@iese.fraunhofer.de 

Abstract 

This paper describes an approach for elicitation of 
requirements based on existing user documentation. The 
approach we describe in this paper supports capturing of 
the information found in user documentation of legacy 
systems, e.g., user manuals, and the specification of this 
information in requirements specifications, using, e.g., 
Use Cases. We propose a conceptual model describing 
the transition from user documentation to requirements 
artifacts describing common and variable elements of a 
product line model or requirements specification. We 
present heuristics that allow an easy identification of text 
elements in user documents that are then used to create a 
significant part of the requirements specification and 
product line model, respectively.  

1. Introduction  

The development of industrial software systems may 
often benefit from the adoption of a development cycle 
based on the so-called system-families or product lines 
approach [20] [6]. This approach aims at lowering 
production costs by sharing an overall reference 
architecture and concepts of the products, but allows them 
to differ with respect to particular product characteristics 
in order to e.g. serve different markets. The production 
process in product lines is therefore organized with the 
purpose of maximizing the commonalities of the product 
family and minimizing the cost of variations [14]. 

In the first stage of a software project, usually called 
requirements elicitation [12], the information and 
knowledge of the system under construction is acquired. 
Especially when developing more than one product, 
requirements elicitation is a complex task, in depth 
knowledge of the problem domain often is a prerequisite 
for a successful product family. Normally, domain experts 
with knowledge in the problem or application domain, 
have to elicit and model the requirements in an highly 
interactive and time consuming process. But when a 
company wants to build a new product, or decides to start 
a product line, often systems already exist that can be used 
as a knowledge base for the new product line [16]. The 
information from legacy systems is a valuable source for 

building the reusable assets. This information from 
existing systems can be found in the code, in architecture 
descriptions and in requirements specifications [16].  

If user documentation is present, it is the first choice to 
start the elicitation process for the information needed in 
product line modeling as well as in single system 
development. User documentation that is useful as input 
for product line modeling can be found in the cases of 
project-integrating (existing systems under development 
will be integrated into the product line), reengineering-
driven (legacy systems have to be reengineered into the 
product line) and leveraged product line engineering (the 
company sets up a product line based on a product line 
that is already in place) [26]. Furthermore, also in case of 
creating the requirements specification for a new single 
system in the product family, user documentation of 
recent and current products can be available. 

Product Line Engineering includes the construction of 
a reusable set of assets. Constructing such a reusable asset 
base for specific products in a domain is a more 
sophisticated task than the development of assets for a 
single system because several products with their 
commonalities and variabilities have to be considered. 
This implies the planning, elicitation, analysis, modeling 
and realization of the commonalities and variabilities 
between the planned products. As a result, creating the 
requirements for a product line puts high load on the 
domain experts creating them. 

In this paper we propose an elicitation approach that is 
based on a conceptual model. With the elicitation 
approach common and variable features [19], Use Case 
elements [7], tasks describing user activities in an 
interactive system [24] and textual requirements can be 
elicited from user documentation (e.g., manuals). As 
existing systems are the basis for this approach, it can be 
seen as a reengineering method for documents 
transferring user documentation into basic elements of 
information for requirements specifications. By reusing 
the information from the user documentation of the recent 
and existing systems, one can produce a traceable 
requirements specification that is more consistent and 
complete. This kind of approach ensures a systematic 
connection between the requirements specification and 



4

the recent and current systems. Furthermore, the domain 
experts have less workload, as basic elements of 
information are already provided either by non-domain 
experts or automatically by a tool. 

The paper is structured as follows: in Section 2 we 
describe product line modeling and the benefits of using 
user documentation for elicitation and specification of 
requirements. In Section 3, we present the conceptual 
elicitation model, i.e., models describing the syntactic and 
semantic types of information found in user documents  
and requirements specifications. They are the foundation 
for the elicitation approach we describe in section 4. As 
part of this approach, we present heuristics that are used 
to map textual elements in the user documentation to 
requirements artifacts that are used to build up a 
significant part of the requirements specification and 
product line model, respectively. Finally, we conclude the 
paper in Section 6.  

2. Motivation 

Using legacy system description as input for the 
requirements engineering phase is on the one hand 
motivated by product line engineering and on the other 
hand by reuse principles. In this section we will describe 
general product line modeling concepts and the influence 
of legacy documentation on modeling requirements for 
single systems and product lines.  

2.1. Product Line Modeling 

Product line engineering [6] can be described as a 
technology providing methods to plan, control, and 
improve a reuse infrastructure for developing a family of 
similar products instead of developing single products 
separately. This reuse infrastructure manages 
commonality and controls the variability of the different 
products. Examples for product line approaches are 
PuLSE [3], FAST [31] and the SEI Product Line Practice 
Initiative [6]. 

The goal of product line engineering is to achieve 
planned domain-specific reuse by building a family of 
applications. Distinct from single system software 
development there are two life cycles, domain engineering 
and application engineering. In domain engineering the 
reusable asset base is built and in application engineering 
this asset base is used to build up the planned products. 
The requirements engineering phase of product line 
engineering is generally called domain analysis or product 
line modeling. Domain analysis methods provide 
processes for eliciting and structuring the requirements of 
a domain, or product line. The results are captured in a 
domain model. A domain model must capture both, the 
common characteristics of the products and their 
variations. The domain model is the basis for creating 

other reusable assets like a domain specific language or a 
component-based architecture. For a domain analysis 
method to be applicable it must be appropriate to the 
specific context of the organisation and the application 
domain and it must provide enough guidance so that it 
can be carried out. As in other areas of software 
development, the context for each domain analysis 
application varies, and methods that are appropriate in 
one context will not be in others. This fact is especially 
important for domain analysis because of the compound 
effects of inappropriate models over multiple products 
and over the whole lifecycle. Therefore, a generally 
applicable domain analysis method should be 
customisable to the context of the application.  

Product line modeling extends requirements 
engineering for product lines.  
Apart from general requirements engineering principles, 
product line modeling methods have to emphasise further 
principles: 
• Commonality and Variability  

When doing domain analysis the properties of 
several products have to be modelled at once. As the 
planned products that are analysed during domain 
analysis differ in their features and in their 
requirements, the commonalities and variabilities 
between those products have to be captured and 
adequately modelled. 

• Traceability 
Providing traceability from the requirements to the 
product and from the requirements to architecture, 
implementation and tests is very important in 
product line engineering. As a product line spans 
over several products and several releases of the 
products it has to be ensured that those two 
dimensions of traceability (traceability through 
products and through lifecycles) is provided. 

   

Figure 1 A requirements elicitation process 

Documentation

of existing systems

Modeling

(Product Line)

Requirements

Domain

Experts

Requirements/

Product Line 

Engineers

Elicitation

commonalities variabilities

Commonalities, variabilities

And instantiation support

Solution 

Domain

Knowledge

Problem 

Domain

Knowledge



5

Furthermore, decision modeling (building a that model 
collects and abstracts the information on which 
requirement is instantiated in which product), and 
evolution over lifetime of thee product line also have to be 
supported. 
  There are several approaches for domain analysis or 
product line modeling. In most product line modeling  
approaches, the integration of legacy systems into the 
domain analysis phase is not described in depth. An 
overview on domain analysis methods like FODA [19], 
ODM [28] or Commonality Analysis within FAST [30] 
can be found in several surveys like [8] or [2]. An 
approach that is often used is feature modeling [19], 
where features are seen as common and variable 
characteristics of a system that have some value to the 
user.  Our elicitation approach supports feature modeling 
as with the approach, features can be identified in user 
documentation.  

The PuLSE-CaVE (Commonality and Variability 
Elicitation) approach for elicitation that we describe here 
is integrated into the PuLSE-CDA [4] approach that  
builds  the domain analysis component of the PuLSETM

(Product Line Software Engineering) 1 framework [3]. 
With the help of the approach described here, information 
on legacy systems can be systematically integrated into a 
product line model developed with CDA or any other 
approach. As variable and common elements can be 
elicited with the approach we describe in section 4, this 
approach supports requirements elicitation for product 
lines. 

2.2. Reusing Documentation in Requirements 
Engineering  

The information needed to build a requirements 
specification for a single system or a product line model is 
normally elicited interactively with high expert 
involvement (c.f. Figure 1). As domain experts have a 
high workload and are often unavailable, high expert 
involvement is a risk for the successful introduction of 
requirements engineering processes and methods like a 
product line engineering approach in an organization.  
Systematically using existing documentation of former or 
current products like user manuals to support the 
elicitation process reduces the expert load and makes the 
requirements more trustable. So, systematically 
integrating legacy documentation into the requirements 
phase has many benefits: 
• Benefit 1 – Integration and reuse of textual 

information:  
This is achieved by integrating existing systems 
textual information (e.g., user manuals) into product 
line and requirements specifications. By integrating 

                                                          
1 PuLSE is a registered trademark of Fraunhofer IESE 

textual information, not only code can be reused but 
all assets built during the previous lifecycles.  

• Benefit 2 – Feasibility of requirements engineering: 
The feasibility of requirements engineering 
approaches and of product line modeling will be 
supported through these document-based techniques 
(e.g. by finding reasons for missing requirements 
[12]). A document-based technique can decrease the 
effort the domain experts have to spend with 
interviews and meetings and leads to a significant 
reduction of the expert load. The basic information 
can be elicited from documents and the experts can 
concentrate on planned innovative functionality. 

• Benefit 3 – Increased acceptance of the product line 
in the development organization:  
The acceptance of the product line within the 
organization can be increased by reusing the legacy 
information, which was produced within the 
organization. There are two reasons for this. First, the 
acceptance of the product line is increased because 
there is confidence in the quality of the legacy 
products. Second, reusing the legacy information 
instead of developing everything from scratch 
reduces the effort to built the product line. 

• Benefit 4 – Better traceability from the product line 
to the existing systems:  
Traceability to the existing system can be established 
only with a systematic approach which supports 
linking of legacy assets to the product line model 
built during domain analysis. Therefore, it is 
important to document the traces from the legacy 
documents to the new documents during elicitation 
and modeling.

There are some methods from single system 
requirements elicitation that describe how to elicit 
information from existing documents. Alexander and 
Kiedaisch [1],  Biddle [5] , von Knethen [30] and the 
REVERE Project  [25] focus on reusing natural language 
requirements in different forms. The QuARS approach 
[9], the KARAT approach [29] and Maarek [21] apply 
natural language processing or information retrieval 
techniques to requirements specifications in order to 
improve their quality. The approach that we describe here 
overcomes the shortcomings of other approaches by 
explicitly considering variability and integrating user 
documentation into product line modeling and modeling 
of Use Cases. 

For product line modeling, single system elicitation 
methods cannot be taken as they are, because multiple 
documentations have to be compared, commonalities and 
variabilities have to be elicited and additional concepts 
(e.g. abstractions, decisions) are needed. MRAM [22] is a 
method that describes how to analyze and select 
appropriate textual requirements for a product line but 



6

their focus is on the transition from domain engineering 
rather than on the transition between existing systems and 
domain engineering.  In ODM [28], the primary goal is 
the systematic transformation of artifacts (e.g., 
requirements, design, code, tests, and processes) from 
multiple existing systems into assets that can be used in 
multiple systems. ODM stresses the use of legacy artifacts 
and knowledge as a source of domain knowledge and 
potential resources for reengineering/reuse but doesn’t 
clearly state how to elicit requirements from documents. 

With the approach that we present here we overcome 
the shortcomings of the existing approaches for product 
line modeling (no explicit elicitation, no systematic 
integration of existing documents) and for reusing 
requirements from single systems engineering (no 
consideration of variability, no use of user 
documentation).  

3. Conceptual Elicitation Model 

In this section we describe a conceptual elicitation 
model that is the basis for our elicitation approach 
described in section 4. The elicitation model consists of 
four parts (see Figure 2): 
• A user documentation model describing the elements 

that are typically found in user documentations, 
manuals and technical specifications (e.g., sections, 
glossaries, and lists). 

• A requirements concept model describing concepts 
that are typically used in requirements specifications 
(e.g., roles, activities, functions ) independent of the 
notation used. 

• A variability concept model describing the principle 
commonality and variability concepts that can be 
found by comparing different documents and that are 
used for modeling. 

• A requirements artifact model describing elements of 
typical single system requirements specifications and 
product line models. These elements form a notation 
that is used to capture requirements (like Use Case 
elements, features or textual requirements). Those 
requirements can have, but do not have to have an 
explicit representation of variability. 

The transition from one stage of the model to another 

stage is described by heuristics (specific rules-of-thumb 
or arguments derived from experience). These heuristics 
describe, e.g., which element of user documentation can 
be typically transformed into which requirements concept. 
It is also possible to directly transform requirements 
concepts into requirements artefacts without searching for 
variabilities (see arrow “single system elicitation” in  
Figure 2).  

3.1. User Documentation Model 

Our user documentation model (see Figure 3) 
describes the principal constituents of user documents. 
The document types that we analyze are user 
documentations or user manuals that describe the 
functions and usage of a system and product descriptions 
that describe the features and technical details of a 
product. A document normally has a title, it often has a 
table of contents and a glossary and it consists of several 
sections. A TOC entry normally corresponds to a heading 
in a section.  A glossary consists of a list of terms that are 
described in paragraphs. A paragraph consists of 
sentences; it can also contain figures, tables and formulas. 
A sentence is composed of phrases (language constructs 
consisting of a few words) and/or words. A phrase can 
also be a link (describing a reference to something inside 
or outside the document).  Most elements of the user 
documentation model have attributes describing 
characteristics of this element (like highlighted for 
paragraphs and words, or numbered for lists), the 

Requirements Concept

Requirements Artifact
User Documentation

Variability

User DocumentationUser Documentation

condensed heuristics

Heuristics

single system
elicitation

Figure 2 Overview of the model  Figure 3 Model of User Documentation  

User Documentation

Product Description

TOC entry

Document

Table of ContentsTitle

Heading

Section

Paragraph

Glossary

Term

Figure Table

Table Heading

Table Body
Image

Figure Heading
Formula

List

Phrase Word

Link

Number

Sentence

List Element

User Documentation Package



7

attributes are not shown in the figure.  This model 
describes the elements of a document on  an adequate 
level for eliciting requirements concepts.  

3.2. Requirements Concept Model 

The requirements concept model (see Figure 4) 
describes concepts that can be elicited from user 
documentation and that are normally realized or described 
by requirements artifacts in requirements specifications. 
The model describes the elements independent of a 
specific notation (like textual or Use Case representation). 
The most general requirements concept is a requirements 
element. A requirements element can be everything that is 
of value for a requirements specification. A requirements 
element can be a user task, a role, data, a naming 
convention, a constraint or a relation to something in the 
environment of the system to be described. Data can either 
be I/O data or internal data, constraints can either be 
usage or design constraints. A user task, that describes the 
high level task the user wants to perform with the help of 
the system can be decomposed into activities, activities 
consist of navigation elements, system functions and a 
mapping of the activities to functions.  

Based on this requirements concept model and the 
model of user documentation described in section 3.1 we 
can define heuristics for the transition of elements from 
one model to another.  Example heuristics for 
transitioning from a user documentation element to a 
requirements element are: “A heading that contains a verb 
often is an activity”  or  “a highlighted sentence 
containing the phrase “normally” or “with the exception” 
can describe constraints”.  

3.3. Variability Model 

In the variability model, the variation aspects are 
described. In order to find different variability elements, 

the requirements elements (from the requirements concept 
model) found in different user documentations are 
compared. We decided to support the following 
variability elements and kinds of variation: 
• Commonality

No variation exists in the requirements element, the 
same requirements element can be found in all 
documentations.  

• Optionality
A requirements element exists in some of the 
products, but does not exist in some others.  

• Alternative
The requirements element exists in two or more 
different characteristics in the existing products (e.g. 
one product supports one database one product 
supports a different one). 

• Range
There is a range of values that is supported by the 
different products (e.g. the memory size can vary 
from 10 to 128 MB).  

Based on those variability elements, heuristics can be 
defined that identify different variable requirements 
concepts by comparing the user documentations of 
several legacy products. These heuristics are depicted by 
the two arrows in  
Figure 2 from user documentation and from requirements 
concept to variability. 

Examples of such heuristics are “numbers in the 
document that were identified as data and belong to the 
same function and that have a different value can be a 
range variability element” or “ “navigation elements that 
occur only in one documentation can be a hint for an 
optionality  (an optional user interface element)”. 

3.4. Requirements Artifact Model 

The fourth package of our conceptual elicitation 
model is the requirements artifact model. In this model 
different elements of requirements specifications that can 
be used for single system modeling and for product line 
modeling are described. Different from the requirements 
concept model, that describes the elements on a 
conceptual or semantic level, the requirements artifact 

Figure 4 Requirements Concept Model 

Figure 5 Variability Model 

Variability Element

Commonality

Alternative Optionality

Range

Variabilty Model Package

Requirements Element

User Task Data RoleConstraint

Naming Convention
&Definition

I/O DATA Internal DataDesign
Constraints

Usage
Constraints Activity

System FunctionNavigation
(to Systemfct.)

Mapping of Activities
to System Functions

System ReactionUI-Element (Call)

External
relations

Requirements Concept Package

Quality



8

model describes requirements elements on a syntactic or 
notational level. In different kinds of requirements 
specifications, the same conceptual elements can be 
described with different notational elements, e.g. a role 
from the requirements concept model can be an actor in a 
Use Case description or a stakeholder description in a 
textual requirements specification. 

As we also describe the application of our approach 
for product line modeling, we have an integrated model of 
variability here. The variability model we use here is the 
model described in the PhD thesis of Muthig [23]. In 
product line engineering, variability has to be made 
explicit in the requirements artifacts. Different extension 
(e.g. to UML-Use Case diagrams [17][14], or to textual 
Use Cases [17]) exist that make the variability explicit and 
give support for instantiation of requirements for 
application engineering. Some of these extensions use 
stereotypes or tags to describe variability, some 
extensions use extra elements to make variability explicit.  

As variability is encapsulated outside the requirements 
artifact model in the product line artifact and the product 
line artifact element (see Figure 6), the model can also be 
used for specifying single systems requirements. At the 
moment we have specified two different kinds of 
requirements notations:  Use Cases and textual 
requirements specifications. We have also specified 
artifacts that are more specific to product line modeling 
like feature models [19] but we will not describe them in 
this paper. Further requirements artefacts will be 
integrated into the requirements artifact model.  We added 
different representations here, as our general approach to 
product line modeling [4] is customisable and highly 
depends on the requirements elements found in the 
organization that wants to do product line engineering. 
For doing product line engineering, we put variability 
elements on top of the existing notation and so can keep 
the notation similar to the one used in the organization 
before [27].  

Concerning the elements in Figure 6, a Use Case 
diagram consists of Use Cases, actors and different 
relationships between the Use Cases and the actors.  A 
textual Use Case (according to Cockburn [7]) consists of 
different elements like Use Case goal, precondition post 
condition, Use Case exceptions and the actual description 
of the Use Case consisting of steps. The form of 
requirements specification we describe here follows the 
IEEE Standard 830 [15]. A requirements specification is a 
textual document consisting of functional, non-functional 
and data requirements including project issues and 
rationales for the different requirements. 

We have defined heuristics for transitioning 
requirements concepts into requirements artifacts (e.g., “a 
role is described as actor in a Use Case diagram” ) and 
heuristics that additionally include variability (c.f. Figure 
2). An example of such a heuristic also considering 
variability is “an optional activity can be represented as 
an optional Use Case in a use diagram”. 
For the transition between elements of these packages we 
have found different heuristics. For users of the approach 
and the conceptual model those heuristics can be 
integrated to condensed heuristics describing the 
transition from user documentation directly to 
requirements artifacts (c.f. arrow ”condensed heuristics” 
from user documentation to requirements artifact in 
Figure 2). The elicitation approach we describe now uses 
the heuristics in this direct form to make elicitation easier 
when applying the approach. 

4. An elicitation approach using user 
documentation    

In this section, we propose an approach for controlled 
elicitation, which guides product line engineers and 
domain stakeholders in how to elicit knowledge from 
existing documents and how to transform documentation 
into product line models. This approach, PuLSE-CaVE 
(Commonality and Variability Elicitation) is an approach 
for structured and controlled integration of user 
documentation of existing systems into the product line 
[18]. The approach is compliant with the conceptual 
model described in Section 3 and is also very valuable for 
single system requirements engineering if legacy 
documentation is available. 

Figure 6 Requirements Artifact Model 

Product Line Artifact

Use Case
Goal

UC Element

Actor

Relationship

Use Case (UC)

Use Case Diagram

Use Case
Step

UC
Precondition

Use Case
Postcondition

Use Case
Exception

Rationale

Data
Requirement

Project Issue
Non-functional
Requirement

Functional
Requirement

Requirements Artifact Package

Product Line Artifact Element

Requirements Specification

All white elements in this diagram can
be Product Line  Artifact Elements

Interface
Requirement



9

With the elicitation approach common and variable 
features [19], Use Case elements [7], tasks describing user 
activities in an interactive system [24] and textual 
requirements can be elicited. As existing systems are the 
basis for this approach, it can be seen as a reengineering 
method for documents transferring user documentation 
into basic elements of information for requirements 
specifications. The approach was applied in three case 
studies [18] [11], further case studies will follow. The 
approach consists of the following phases (c.f. Figure 5) : 
• Preparation   
• Search 
• Selection, change and modification. 

The first two steps of the approach can be performed 
by persons who just have a slight domain understanding, 
they do not have to be domain experts. The third step 
requires involvement of domain experts as there 
documentation entities have to be validated and selected. 
We will now describe the three steps in more detail.  

4.1. Preparation  

Preparation consists of the four sub steps collection, 
selection, division and browsing. During collection, user 
documentation for the systems that should be integrated 
into the product line and of those systems that are related 
should be collected to have all needed information 
available. In the case of a project-integrating product line 
adoption these are all user-documentations of the systems 
currently under development (as far as they already exist), 
in the case of a reengineering-driven or leveraged product 
line adoption all user documentations of existing systems 
in the domain have to be considered. As parallel reading 
of more than one document requires divided and increased 
attention and leads to lower performance [32], the number 
of documents to be read in parallel should be reduced to a 
minimum. So, if there are more than 3 systems, we 
recommend to select two or three documents that cover 
the variety of systems (e.g., one documentation of a low-
end system, one of a high end system and one typical 

system) to compare for a first search in the documents. 
The other documents can be used to complete the elicited 
information after completing the search phase.  

After selecting the three typical documentations, divide 
them into manageable and comparable parts of 3 to 10 
pages (e.g., comparable subchapters). In browsing, for 
each of those manageable parts (or for a subset of those 
parts that includes typical sub domains) browse through 
them in order to decide the amount of variability in them. 
There are two alternatives: 
• For those document parts that look obviously 

different (e.g., that differ in more than 30% of the 
text), process them one after another in the following 
phases. Start the analysis with the biggest document  

• Compare other documents in parallel in the following 
phases. 

4.2. Search 

In the search step the identified user document parts 
containing documentation elements (c.f section 3.1) are 
analyzed and requirements artifacts are searched. The 
elements to be identified in the documents, which should 
be sized from one word to at most 5-6 lines, are marked 
and tagged in the source documents. Common and 
variable requirements artifacts that can be identified for 
Use Cases are   for example Use Case names, actors, 
goals, preconditions, steps of descriptions, success 
conditions, and extensions. Also features and different 
kinds of requirements can be defined. 

Common and variable requirements artifacts can be 
identified and marked in the text with the following 
heuristics The heuristics described here are heuristics that 
transform user documentation into requirements artifacts, 
so these heuristics build a connection between user 
documentation and requirements artifacts by using 
requirements concepts and variability (c.f. Figure 2, the 
heuristics described here are condensed heuristics) The 
heuristics we show here are just examples, the complete 
heuristics can be found in [18]:

Use case elements 
• Headings of sections or subsections typically contain 

names of Use Cases. 
• Phrases like “only by”, “by using”, “in the case of” 

can be markers for Use Case preconditions. 
• Phrases like “normally” “with the exception”, 

“except” can mark Use Case extensions. 
• Numbered lists or bulleted lists are markers for an 

ordered processing of sequential steps and describe 
Use Case descriptions. 

• Sentences that describe interactions with the system 
in the form of “to do this…do that…” are Use Case 
descriptions. 

• Passive voice is typically a marker for system activity Figure 6 An outline of the elicitation approach 

Documentation of

existing systems

Preparation

Selected

Documentation

Entities

search, 

clustering

classification,

common + variable

model elements

Selection +

change

Domain

Glossary

Parts of 

requirements

model

Expert 

involvement

Process

Step

Process 

Products
Documentation of

existing systems

Preparation

Selected

Documentation

Entities

search, 

clustering

classification,

common + variable

model elements

Selection +

change

Domain

Glossary

Parts of 

requirements

model

Expert 

involvement

Process

Step

Process 

Products



10

(e.g. “The volume of the radio is muted” = the system 
mutes the volume of the radio). These sentences can 
be used in the Use Case description.

Requirements 
• Phrases like “press”, “hold”, “hold down” , “press 

briefly”, “select” , “key in” “scroll” etc. mark a 
dialogue with the user interface or navigation 
elements 

• Activities or system functions are those elements that 
were marked as features that contain a verb 

• Non functional requirements cannot be found 
explicitly in user manuals, but hints to non functional 
requirements and to qualities can be found. Shortcuts 
are alternative usage scenarios and can therefore be a 
marker for a non functional requirement like “the 
system shall be used in two alternative ways….” 

• Adverbs and adjectives (longer, fast, quickly….) can 
mark NFRs, especially if a phrase or sentence appears 
in the user manual once with the adverb, once 
without. (e.g. “to turn off the radio” and “to quickly 
turn off the radio”) 

• Technical data can give a clue to non-functional 
attributes of the system  (e.g. size of the display, 
battery size etc.) 

• Numbers in the identified elements can be hint for a 
non-functional requirement (why was exactly this 
number chosen?) 

Features 
• Headings of sections or subsections typically contain 

features 
• Features can be found in highlighted phrases (bold or 

italic font) or in extra paragraphs 
• Technical descriptions or short descriptions of a 

system often contain lists of features 
Commonalities and variabilities  

• Arbitrary elements occurring only in one user manual 
probably are optional elements. 

• Headings or subheadings that only occur in one of the 
documentations can be model elements that are 
optional as a whole. 

• Headings or subheadings that have slightly different 
names or headings or subheadings that have different 
names but are at the same place in the table of 
contents can be hints for alternative model elements. 

•  Phrases that differ in only one or a few words can be 
evidence for alternatives. 

• If numerical values in the document differ they can be 
parametrical variabilities.  

These heuristics form a first set of heuristics that will be 
extended in future when applying more case studies. With 
the support of these heuristics, which help in finding a 
significant part of the requirements artifacts (i.e., of the 
requirements specification or product line model) and 
variabilities, the user documents should be marked  (e.g., 

with different colors for different model elements and for 
variabilities) and integrated into an intermediate 
document. The identified elements should be extracted 
from the document and tagged with attributes containing 
the information needed for selecting appropriate elements 
for modeling the product lines requirements. Table 1 
shows the elements of such a notation. 

4.3. Selection 

In the last step, selection, the extracted and tagged 
elements have to be checked and possibly adjusted by a 
domain expert. The domain expert will change the 
elements regarding the following aspects: 
• Is a text element that was marked as a possible 

requirements artifact really a requirements artifact 
that shall be integrated into the requirements 
specification and product line model, respectivelly? 

• Is an element marked as optional/alternative really an 
optional/alternative element in the new product line?

• In case we have want to build a product line: Are the 
product line models to be built out of the elements 
the right models to describe the systems of the 
product line? 

The relations (see Table 1) are used to make comparisons 
between the documents easier, to establish traceability to 
the source documents and, with tool based selection, to 
support navigation in the elements and between the sets of 
documents. 

4.4. Results 

The results of the approach are approved requirements 
artifacts that can easily be integrated in requirements 
specifications and product line model elements, 
respectively.  Which model elements should be elicited 
depends on what the modeling approach used needs as 
primitives. The relations (see last lines of Table 1) are 
used to make comparisons between the documents easier, 
to establish traceability to the source documents and, with 
tool based selection, to support navigation in the elements 
and between the sets of documents. With these elements 
the domain expert and the requirements engineer can 
build Use Cases and requirements using the information 
about the elements collected in the tags.  

We have applied the approach in four case studies  
with real documentation from different systems in three  
domains (automotive: user manuals of cars, telecomm-
unication: user manuals of mobile phones,  civil 
engineering: user manuals of calculation software) one  of 
the case studies is described in [11], the others will be 
described in [18]. The user manuals investigated in the 
case studies were different in structure and content but 
applying the heuristics was successful in all cases. In the 
case studies Use Case elements, functional and non-



11

functional requirements and features were the primary 
elements found by comparing the documentation of three 
to five legacy systems. 

5. Conclusions  

In this paper we described an approach for elicitation 
and specification of requirements specifications and 
product line models, respectively, based on existing user 
documentation. Use Cases, which are quite common in 
single system requirements engineering are also often 
used in product line engineering to model requirements on 
a line of systems. The approach we described here 
supports capturing of the information found in user 
documentation of legacy systems to use them in 
requirements specifications and product line models, 
respectively. The approach can be used for building single 
system requirements and product line requirements, only 
the elicitation of commonality and variability that is 
described in the variability model part of the conceptual 
model and in the variability heuristics is product line 
specific. We presented heuristics that allow an easy 
identification of text elements in user documents based on 
a conceptual model.  The approach we propose here can 
support other elicitation activities and can give basic 
information on the existing systems. 

With the help of a supporting tool that will also be 
based on the conceptual model, the selection of the text 
elements and the tagging with the attributes could be 
performed semi-automatically.  We plan to support our 
elicitation process by such a tool but only to generate 
propositions for elements, not for an automatic analysis. 
The process of analyzing a user manual in a semi-
automated process opens up the possibility to capitalize 
on the wealth of domain knowledge in existing systems 
considered for migration to next-generation systems. 
Converting these existing requirements into domain 
models can reduce cost and risk while reducing time-to-
market.  

Acknowledgements 
This work was partially supported by the Eureka 

Σ!2023 Programme, ITEA , Ip00004, Project CAFÉ and  
Ip00103, Project Empress. 
We want to thank Alessandro Fantechi, Stefania Gnesi 
and Guiseppe Lami for performing the joint case study 
described in [11] that influenced the work described here. 

 References 
[1] I. Alexander and F. Kiedaisch. Towards recyclable 

system requirements. In Proceedings of ECBS’02, Lund, 
Sweden, 2002. 

[2] G. Arango. Domain analysis methods. In W. Shaefer, R. 
Prieto-Diaz, and M. Matsumoto, editors,  Software Reusability. 
Ellis Horwood, 1993. 

[3] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. 
Schmid, T. Widen, and J.-M. DeBaud. PuLSE: A Methodology 
to Develop Software Product Lines. In Proceedings of the 
Symposium on Software Reusability (SSR’99), Los Angeles, 
CA, USA, May 1999. ACM. 

[4] J. Bayer, D. Muthig, and T. Widen. Customizable 
Domain Analysis. In Proceedings of GCSE '99, Erfurt, 
Germany, September 1999 

[5] Robert Biddle, James Noble, and Ewan Tempero. 
Supporting Reusable Use Cases. In Proceedings of the Seventh 
International Conference on Software Reuse, April 2002. 

[6] P. C. Clements and L. Northrop. Software Product 
Lines: Practices and Patterns. SEI Series in Software 
Engineering. Addison-Wesley, August 2001 

[7] A. Cockburn. Writing Effective Use Cases. Addison 
Wesley, 2001. 

[8] J.-M. DeBaud and K. Schmid. A Practical Comparison 
of Major Domain Analysis Approaches - Towards a 
Customizable Domain Analysis Framework. In Proceedings of 
SEKE’98,San Francisco, USA June 1998. 

[9] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The 
linguistic approach to the natural language requirements 
quality; In Proceedings of the 26th Annual IEEE Computer 
Society Nasa Goddard Space Flight Center Software 
Engineering Workshop, 2001. 

Table 1 Attributes for the elicited document parts 
Attribute Values Description 

ID e.g. 1…n or docnumber.nr A unique identifier for the element 
Value Text The text of the element that was found in the document 
Document Identifiers The identifiers of the documents this element was found in 
Requirements 
Artifact Type 

Requirements 
Artifact  

The reqirements artifacts (Use Case description, precondition, feature, 
textual requirement..) the text matches to 

Var Type commonality, optionality, 
alternative, range 

The hypothesis for the variability type of the element (default is 
commonality)  

Parent ID The element, this element is part of 

relations 
Requirements Artifact 
Name 

A possible requirements artifact this element is related to 

Var   
relations 

List of IDs The IDs of other elements that contain alternatives or different parameters 
for this element  



12

[10] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari, 
Application of Linguistic Techniques for Use Case Analysis, 
RE’02, Essen, Germany, September 2002 

[11] A. Fantechi, S. Gnesi, I.John, G.Lami, J. Dörr Elicitation 
of Use Cases for Product Lines. Submitted  

[12] D.C. Gause, G.M. Weinberg Exploring Requirements – 
Quality before Design. Dorset House Publishing, 1989 

[13] J. A. Goguen, Charlotte Linde, Techniques for 
Requirements Elicitation, Proceedings of the 1st International 
Symposium on Requirements Engineering, p.152-163, 1993 

[14] G. Halmans, K. Pohl   Communicating the Variability of 
a Software-Product Family to Customers Journal of Software 
and Systems Modeling, Springer, 2003 to appear 

[15] IEEE-Std 830-1998 IEEE Guide to Software 
Requirements Specifications, The Institute of Electrical and 
Electronics Engineers, New York, 1998 

[16] I. John. Integrating Legacy Documentation Assets into a 
Product Line. In: Proceedings of the Fourth International 
Workshop on Product Family Engineering (PFE-4), Bilbao, 
Spain, October 2001. 

[17] I. John, D. Muthig, Tailoring Use Cases for Product 
Line Modeling, REPL’02, Essen, Germany, September 2002 

[18] I. John, J. Dörr. Extracting Product Line Model 
Elements from User Documentation. Technical Report, 
Fraunhofer IESE, 2003, to appear 

[19] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. 
Feature-Oriented Domain Analysis (FODA) Feasibility Study. 
Technical Report CMU/SEI-90-TR-21, Software Engineering 
Institute, November 1990. 

[20] F. van der Linden. Software Product Families in Europe: 
The Esaps and Café Projects. IEEE Software, 19(4):41--49, 
July/August 2002. 

[21] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. GURU: 
Information retrieval for reuse. In P.Hall, editor, Landmark 
Contributions in Software Reuse and Reverse Engineering. 
Unicom Seminars Ltd, 1994. 

[22] M. Mannion, B. Keepence, H. Kaindl, and J. Wheadon. 
Reusing Single System Re-quirements for Application Family 

Requirements. In Proceedings of the 21st International 
Conference on Software Engineering (ICSE’99), May 1999. 

[23] Dirk Muthig A Light-weight Approach Facilitating an 
Evolutionary Transition Towards Software Product Lines. PhD 
Theses in Experimental Software Engineering. Dissertation, 
Fraunhofer IRB, 2002. 

[24] B. Paech and K. Kohler. Task–driven Requirements in 
Object-oriented Development. In Leite, J., Doorn, J., (eds) 
Perspectives on Requirements Engineering, Kluver Academic 
Publishers, 2003, to appear 

[25] P. Rayson, L. Emmet, R. Garside, and P. Sawyer. The 
REVERE project: experiments with the application of 
probabilistic NLP to systems engineering. In Proceedings 
NLDB’2000. Versailles, France, June, LNCS 1959, 2000. 

[26] K. Schmid and M. Verlage. The Economic Impact of 
Product Line Adoption and Evolution. IEEE Software, 
19(4):50--57, July/August 2002. 

[27] K. Schmid and I. John. Generic Variability Management 
and its application to Product Line Modeling in  Proceedings of 
the First Workshop on Software Variability Management, 
Groningen, 2003. 

[28] Software Technology for Adaptable, Reliable Systems 
(STARS). Organization Domain Modeling (ODM) Guidebook, 
Version 2.0, June 1996. 

[29] B. Tschaitschian, C. Wenzel, and I. John. Tuning the 
quality of informal software requirements with KARAT. In 
Proceedings of  REFSQ’97, 1997.

[30] A. v. Knethen, B. Paech, F: Kiedaisch und F. Houdek. 
Systematic Requirements Recycling through Abstraction and 
Tracability. Proceedings of  RE02, Essen, 2002.

[31] D. M. Weiss and C.T.R. Lai. Software Product Line 
Engineering: A Family Based Software Development Process. 
Addison-Wesley, 1999.  

[32] C.D. Wickens. Processing resources in attention. In R. 
Parasuraman & R. Davies (eds.), Varieties of attention (pp.63-
101). New York, 1984, Academic Press



13

Abstract
Processes and techniques to discover and create
requirements rather than elicit and acquire them from
stakeholders have received relatively little attention in
the requirements engineering literature. In contrast,
researchers in artificial intelligence and cognitive and
social psychology have been researching creativity for
some time. More recently we have applied their
theories and models to requirements engineering. In
this experience paper we report results and lessons
learned from 2 creativity workshops undertaken with
the UK’s Police Information Technology
Organisation, in which theories and models of
creativity informed creative thinking about
requirements and opportunities for bio-metric
technologies in policing. The main results are
presented as lessons learned for the wider
requirements engineering community.

1. Introduction

Requirements engineering is a creative process in
which stakeholders and designers work together to
create ideas for new systems that are eventually
expressed as requirements. The importance of creative
product design is expected to increase over the next
decade. The Nomura Research Institute [1] argues that
creativity will be the next key economic activity,
replacing information. Creativity is indispensable for
more innovative product development [2], and
requirements are the key abstraction that encapsulates
the results of creative thinking about the vision of an
innovative product. It is a trend that requirements
engineering researchers and practitioners, with their
current focus on elicitation, analysis and management,
have yet to grasp fully.

In this experience paper we describe how we
applied creative thinking techniques including random
idea combination, analogical reasoning and
storyboarding as part of a requirements process. The
UK Police’s Information Technology Organisation
(PITO) was seeking to discover new requirements and

opportunities to exploit bio-metric technologies in its
applications. To this end, the authors ran two
facilitated workshops in which Police stakeholders
were encouraged to use techniques to think creatively
and discover new requirements and opportunities.
Although the workshops were a success, the results
suggest that different creativity techniques were more
successful than others at discovering new
requirements. We report the most important results
from the workshops as lessons learned that the wider
requirements community can learn from and apply in
their own activities.

The remainder of the paper is in 6 sections. Section
2 reports work on creativity in other disciplines and its
limited application in requirements engineering.
Section 3 describes PITO, its bio-metric applications
and the rationale behind its 2 creativity workshops.
Section 4 describes the workshops themselves, then
section 5 reports the main results and section 6 the
important lessons learned from the workshops. The
paper ends with a brief discussion and future work for
both PITO and the authors.

2. Related Work

In spite of the need for creative thinking in the
requirements process, requirements engineering
research has largely ignored creativity and few
processes, methods and techniques address it
explicitly. Brainstorming techniques and RAD/JAD
workshops [3] make tangential reference to creative
thinking. Most current brainstorming work refers back
to Osborn’s text [4] on principles and procedures of
creative problem solving. The CPS method describes
six stages of problem solving: mess finding, data
finding, problem finding, idea finding, solution finding
and acceptance finding. The model was originally
intended to help people understand and use their
creative talent more effectively [5]. It has been through
several waves of development. To better describe how
problem solving occurs, and to improve the flexibility
of the model, the six stages were arranged into three
groups – understanding the problem, idea generation,
and planning for action. A recent CPS manual [6]

Creating Requirements –
Techniques and Experiences in the Policing Domain

L. Pennell1 & N.A.M. Maiden2

1Police Information Technology Organisation
Lucinda.Pennell@pito.pnn.police.uk

2Centre for HCI Design, City University
Northampton Square, London EC1V OHB, UK

n.a.m.maiden@city.ac.uk



14

describes activities for supporting each of model stage.
Examples to support combinatorial creativity include
the matrix , which involves making lists then selecting
items from each list at random and combining them to
generate new ideas, and parallel worlds, which uses
analogical reasoning to generate new ideas. However,
there are few if reported applications of the CPS model
in the requirements domain.

Robertson [7] argues that requirements analysts
need to be inventors to bring about the innovative
change in a product or business that gives competitive
advantage. Such requirements are not often things that
a stakeholder directly asked for. Nguyen et al. [8] have
observed that requirements engineering teams
restructure requirements models at critical points when
they re-conceptualize and solve sub-problems, and
moments of sudden insight or sparked ideas trigger
these points. However, elsewhere, there is little
explicit reference to creativity in mainstream
requirements engineering journals and conferences.

One exception, our RESCUE scenario-driven
requirements process [9], incorporated creativity
workshops to encourage creative thinking about
requirements and the earlier stages of design for new
ATM systems. Creative activities were grounded in
the referenced theories of creativity from cognitive and
social psychology, then data from the workshops was
analysed to determine the relevance of these theories
to creative requirements processes. We designed each
workshop to encourage 4 essential processes based on
existing theories of creativity [10,11]: preparation,
incubation, illumination and verification. We also
encouraged exploratory creativity by encouraging
stakeholders to reason with analogical textile design
and musical composition tasks. Likewise we
encouraged combinatorial creativity through random
idea generation and parallels with fusion cooking [12].

The RESCUE creativity workshops benefited the
requirements process in two ways. Firstly, the
candidate design space reduced the number of
requirements to consider by rejecting requirements
that could not be met by current technologies.
Secondly, high-level decisions about a system's
boundaries enabled the team to write more precise use
cases and generate more precise scenarios that, in turn,
enable more effective requirements acquisition and
specification [9]. Lessons learned from these
workshops were applied in the design of the PITO
creativity workshops reported in this experience paper.

3. Creating Requirements to be Satisfied
by Bio-metric Technologies

PITO provides information technology,
communications systems and services to the police
within the United Kingdom. It gathers requirements
for these systems and services from the UK Police
Forces. One of the problems experienced during

PITO’s requirements acquisition processes is the
tendency for stakeholders to think in terms of solutions
that can unnecessarily constrain the system design. In
order to encourage innovation in new policing
systems, stakeholders need to stop thinking about
solutions during the requirements process and focus on
creative thinking about their business needs. As such,
PITO are currently looking for methods and
techniques to support their requirement engineering
processes. Creativity workshops based on the
RESCUE process workshops were trialed as a source
of innovation for producing more creative PITO
requirements and systems.

PITO trialed the creativity workshops as part of its
bio-metrics program to gather requirements for bio-
metric technologies as a basis for future police
applications. PITO is aware of the diverse sources of
new requirements for information systems, for
example reports of problems with existing systems or
changes in business process, but new technologies are
increasingly a source for new requirements [13]. For
example the existence of web technologies led the UK
Police Service to develop a web site that enabled
citizens to report non-urgent minor crimes on-line –
this requirement would not have existed as a viable
requirement had the internet not been widely available
to the UK public. As such, the PITO bio-metrics
program was in a position to benefit from a new
approach to discovering requirements which would
encourage stakeholders to think creatively.

4. Two Creativity Workshops in PITO

This section describes the 2 prototype creativity
workshops that were designed and ran for PITO’s bio-
metrics program.

4.1. Sequence and Structure
The 2 prototype creative workshops were based on

the RESCUE process workshops designed and ran by
City University’s Centre for HCI Design and the
Atlantic Systems Guild, but tailored to meet PITO’s
local needs. This meant that the principles of the
RESCUE workshops could be re-applied but the
workshop designs could not be.

Participants: the two workshops were attended by
six participants representing a cross-section of roles
often involved in producing requirements for a PITO
project. These participants were two technical experts
(in this case 2 bio-metrics experts), two experienced
police officers, and two experienced requirement
analysts. The objective set for these participants was to
produce new and creative ideas for the use of bio-
metric technologies within the UK police service.
Each participant was chosen to represent one of these
domains of expertise, but each also had knowledge of
at least one of the other domains.



15

These six people had never worked as a team
before, although the two technical experts had worked
together before, as had the police officers and the
requirement engineers. In addition, each workshop had
an experienced facilitator and a scribe. The facilitator
was Neil Maiden from City University who had
facilitated the earlier RESCUE workshops for the
CORA-2 project. The scribe was Alexis Gizikis, also
from City University, who had also scribed for some
of the RESCUE workshops. Unfortunately Alexis was
unable to attend the first workshop and a participant
acted as the scribe. Neil and Alexis also acted as
pseudo-experts in air traffic management during the
second workshop as part of the analogical reasoning
activity reported in section 4.4. Both had considerable
exposure to and knowledge of the air traffic
management domain during the RESCUE CORA-2
project with Eurocontrol. However, this role should
normally be preformed by a domain expert who would
have more detailed knowledge of the domain.

Environment: Both workshops took place on PITO
premises in a usability laboratory that enabled them to
be recorded onto video. Presentations were displayed
on a large LCD Screen and 2 monitors so the images
could be seen from any part of the room.

The room was set up with two tables around which
two groups of participants sat. The ideas that were
generated during the workshops were placed on pin
boards on the walls of the room so that the participants
were able to see them and add to them throughout the
workshop. Sufficient room was left for the participants
to move around the room during both workshops.

Facilitation: The workshops were facilitated to
encourage a fun atmosphere so that the participants
were relaxed and prepared to generate and voice ideas
regardless of how silly they may seem, without fear of
criticism. Standard RAD/JAD facilitation techniques
and rules [14], for example avoiding criticism of other
people’s ideas and time-boxing each topic under
discussion, were applied throughout both workshops.

Figure 1. The bio-metrics workshop
environment

Information Capture: Participants were supplied
with snow cards, post-it notes, A3 paper, felt pens and
blu-tack with which to capture the results from the
workshops. Everything captured on the posters was
subsequently documented electronically and sent to all
participants.

Workshops Agenda: Each workshop lasted 3.5
hours. The second workshop took place one week after
the first one. Each workshop was divided into two
distinct creative activities. There was an introduction
phase at the start of the first workshop, and an interim
phase in the week between the two workshops, during
which the participants were encouraged to undertake
further creative thinking as input into the second
workshop. The timings, structure, activities and
deliverables of the most activities from the two
workshops are shown in Figure 2.

Timings and
Activities

Activity Description Intended Outcome

Workshop 1,
30mns
Introduction

Introduce creativity. Define
creativity. Elicit participants’ opinions
about creativity.

Participants have a shared
understanding of creativity as a
starting point for the
workshops.

Workshop 1,
30mns
The how, why
and where of
people
identification in
policing

Participants brainstorm current ways
that the police services identify
people and the problems that occur
when identifying people.

Knowledge of how, where and
why the police services
currently identify people. A
baseline for subsequent
creative thinking in the 2
workshops.

Workshop 1,
60mns
Combinatorial
creativity by
combining
current ideas
together

Participants combine the problems
identified in the previous activity
with capabilities provided by bio-
metric technologies as identified by
the technology experts.

Participants start finding new
ideas for how biometrics can
help solve policing problems,
from combinations of known and
new ideas and technologies.

Workshop 1,
30mns
Prioritising the
new ideas from
the preceding
activities

Participants vote on the ideas
generated from the first workshop,
as a basis for focusing creative
activities in the second workshop.

A prioritised list of ideas
generated from creative
thinking in the first workshop.

Between
workshops
Interim
activities

The participants are encouraged to
continue the combinatorial creativity
activity between the workshops.

Participants continue finding
new ideas for how biometrics
can help solve policing problems,
from combinations of known and
new ideas and technologies.

Workshop 2,
75mns
Analogical
reasoning with
a similar domain

The participants reason analogically
about an air traffic management
domain in order to create new ideas
for a policing system.

Participants understand their
domain from a different
perspective, and generate new
ideas for their domain from
that perspective.

Workshop 2,
75mns
Generate
storyboards
that
encapsulate all
creative ideas
from the 2
workshops

The participants construct
structured storyboards that depict
scenarios that include as many ideas
as possible that were generated
during the preceding activities.

Complex and rich storyboards
that integrate the created
ideas into coherent potential
solutions.

Figure 2. The agenda for the 2 workshops

Each workshop was designed to support the
divergence then convergence of ideas as described in
the CPS model [5]. Each workshop began with one
divergence activity (random idea generation,
analogical reasoning) and ended with one converge
activity (idea voting, storyboarding).

The following sections describe some of these key
activities, and relevant background literature, in more
detail.



16

4.2. Brainstorming: How to Detect People
Nickerson [15] reports that one of the earliest

attempts to develop a structured approach to the
enhancement of creativity started with the promotion
of brainstorming by Osborn. Brainstorming is intended
to allow participants to produce lots of ideas and to
enable their imagination to be stimulated by others
ideas. It relies on creating an environment in which
participants feel free to suggest any idea without fear
of criticism. This can be difficult if the participants
have only just met and may take a little time to get
going. The PITO brainstorming activity was in 2 parts.
In the first participants were asked:
• How do we (the police) identify people (e.g. by

recognising face or voice)?
• Why and where do we identify people?

Answers were intended to focus participants on and
share knowledge about the business domain. Using
answers to these questions the participants were then
asked to brainstorm answers to the question:
• What problems do the police have with

identifying people?
The purpose of this was to focus the participants on

the problems to be solved later in the workshops.

4.3. Combinational Creativity
Combinational creativity is, in simple terms, the

creation of new ideas from combination and synthesis
of existing ideas. As Boden [16] describes, models of
creativity fall into two broad categories, because
creativity itself is of two types. The first type is
combinatorial creativity, where the creative act is an
unusual combination of existing concepts. Examples
of combinatorial creativity are poetic imagery, free
association (e.g. viewing the sun as a lamp), metaphor
and analogy. Combinatorial creativity is characterised
by the improbability of the combination, or in other
words, the surprise encountered when such an unusual
combination is presented. Association and analogy are
the main mechanisms for combinatorial creativity.
Association is the recognition of similar patterns in
different domains, sometimes in the presence of noise
or uncertainty. The association may be retained and
reinforced either by repetition or by systematic
comparison of the internal structures of the two
concepts. Koestler [17] describes association as the
"biosociative act that connects previously unconnected
matrices of experience". He states that most creative
moments in science are the result of recognising a
novel analogy between previously unrelated fields.

Combinatorial creativity by association was applied
in the first workshop to create new ideas based on the
problems and ideas generated in the preceding
brainstorming session. Participants were familiarised
with the combinatorial creativity process using an
example from the RESCUE workshops, in which the
organisers invited a fusion chef to talk about

combining unusual ingredients, and to demonstrate
fusion cooking. In our workshop the participants
worked in 2 groups to generate new ideas to enable
police services to identify people more effectively.
Throughout the activity the facilitators randomly
introduced new biometrics technologies that the
participants had to include in the new ideas. The
outcome was 2 sets of ideas that incorporated unusual
bio-metric technologies in previously unforeseen
ways.

4.4 Analogical Reasoning
Analogical reasoning is a useful but challenging

technique for creative thinking. Analogical reasoning
has been the subject of extensive research in both
cognitive science and artificial intelligence. However,
studies of analogical problem solving suggest that
similarity-based reasoning is difficult [18].
Recognising analogies often needs syntactic
similarities between problems [19] while inducing
mental schemata during analogical matching has
proven difficult even for expert software engineers
[20].

We have already investigated analogical reasoning
in requirements engineering. We define 2 requirement
domains as analogous if the domains share a network
of knowledge structures that describe goal-related
behaviour in both domains [20]. Studies have shown
that people can exploit such analogies to reuse
requirements if they are given support to recognise,
understand and transfer the analogies [20]. In the
creative workshops we provided this support but
encouraged the participants to go one step further and
use the transferred knowledge from the non-policing
domains to provoke creative thinking about
requirements ideas in the bio-metrics policing domain.

We encouraged analogical reasoning to think
creatively about one use of bio-metrics technologies
that was prioritised as important by the stakeholders –
detecting and monitoring the movement of people in
crowds using technologies such as CCTV. The
facilitators applied the NATURE Domain Theory [21],
of which one of them was an author, to identify and
elaborate an analogical match with air traffic
management (ATM). Both domains are prototypical
instantiations of 3 key NATURE object system
models:
• OBJECT SENSING: detecting the complex

movements of remote objects in the environment;
• AGENT MONITORING:  agents monitor the

movement of objects in a remote space;
• OBJECT-AGENT CONTROL: a designed agent

seeking to control the movement of remote objects
to achieve the goal state of keeping the objects
apart in space and time.

The participants again worked in 2 groups of 3
participants. The facilitators encouraged analogical
reasoning in 2 stages:



17

1. Identify and list mappings between agents, objects,
actions, constraints and goals in the 2 domains;

2. Use each mapping in turn to generate one or more
new ideas about the policing domain by
transferring knowledge about problems or
solutions from the ATM domain.

To support this process the facilitators used a
simple example of analogical reuse between the two
rental domains shown in Figure 3. The new ideas were
recorded on snow cards and shared between the 2
groups at the end of the activity.

Video

Customer Loan

Book

Student Loan

What features of a video loan
might be applied to University

library loans?
1. Special promotions to encourage
2. Bonus point reward systems
3. To-the-door delivery
4. Professional service at desk
5. Agreed minimum waiting times

Reuse

Figure 3. The rental example used to
demonstrate and explain analogical reasoning
to the participants

4.5 Storyboards
Storyboarding is a technique that is often used to

elaborate creative ideas without constraining the
creative process. Participants again worked in 2 groups
of 3 participants. Each group was asked to produce a
storyboard that described the integration and practical
implementation of the ideas generated during the
earlier analogical reasoning activity and documented
from earlier activities. A practical idea was one that
could be implemented in the next 5 years. As such the
2 storyboards were the culmination of the creative
process during the 2 workshops, encapsulating many
of the creative ideas generated during them.

To structure the storyboarding process each group
was given A1-size pieces of paper which were
annotated with 16 boxes to contain a graphical
depiction of each scene of the storyboard and lines
upon which to describe that scene. Examples of a
blank and a completed storyboard are shown in Figure
4.
4.6 Expert Presentations

Creative thinking requires knowledge from other
sources to be successful. One premise behind the
workshops is that most people are creative. More
creative thinkers search for new ideas by manipulating
the knowledge and experience to see different
problems, opportunities and solutions. Therefore we
used short expert presentations to communicate the
relevant domain knowledge to the participants. Each

workshop had one such presentation. In the first
workshop, one of the bio-metrics experts gave a 15-
minute presentation of available bio-metric
technologies – these technologies were then used in
the subsequent combinatorial creativity activity. In the
second workshop, the facilitator gave a 15-minute
presentation on air traffic management systems based
on his considerable expertise in this analogical
domain.

5. Results from the Workshops

Both workshops took place and ran to schedule. All
planned activities were followed without participant
disruption or disagreement, thus making workshop
management a relatively straightforward activity.
Throughout both workshops we successfully applied
standard facilitation rules and guidelines, for example
ensuring and controlling all stakeholder involvement.
The strong use of the reported techniques meant that
potential conflicts about requirements and ideas from
different stakeholders arose within each technique,
were discovered across groups during presentations,
and were resolved during voting at the end of the
workshop.

The brainstorming session revealed 18 basic
problems that needed to be overcome using bio-
metrics technologies. These were: reliability, disguise,
quality of information, legislative constraints,
admissibility, cost budget, time, resources, memory,
limitations of the technology (lack of automation),
face blindness, linking to other systems, limitations
(human memory, organisational, technological),
individual differences, time limitations, sharing of
knowledge, false memories, and change of appearance.
These problems provided the baseline for subsequent
creative thinking in the workshops.

All of the creative activities were undertaken. Both
groups combined different problems and bio-metric
technologies together according to random
permutations generated by the facilitators to generate
new ideas. Both groups reasoned analogically with the
ATM to generate new ideas about people sensing and
location systems in the policing domain – see the
example analogical mapping table in Figure 4. Both
groups also produced structured storyboards using all
of the ideas – as shown in Figure 5.

Air Traffic Policing
Norm = pattern – identifying
abnormalities

Searching for norms and patterns to
search for abnormalities

Surveillance space activities produce
a trigger

Alert and face recognition/CCTV
system from motion on a scene

Radar CCTV
Mid air collision Unusual group of people. Man U

versus Spurs fans

Figure 4. Example analogical mappings
produced by one of the groups



18

Figure 5. A blank and completed storyboard
template from the second workshop

The 2 workshops generated a total of 29 new ideas
for using bio-metric technologies in PITO applications
– 14 in the first workshop and 15 in the second. The
ideas from the second workshop tended to be more
complete and developed than those from the first.
Figure 6 shows the first 4 ideas from either workshop,
to demonstrate this difference in the quality of the
ideas.

1. Suspect
Link with scene CCTV-Bio-metric
Tracking – CCTV – Bio-metric
Post event Analysis

2. Monitor Event
2.1. On-line
2.2. Face in crowd

3. Biometrics in the use of travel e.g. driving into London
4. The use of biometrics on the roadside may shift the balance of a

business process
1. Reducing paper while maintaining non-repudiation work by using a

biometric signature instead of having to print off hard copies which can
be signed.

2. Biometric device on a digital camera confirms that scene of crime
officer was the person who took that picture at that time.

3. Human rights – A person uses their biometric to release their own
information to prove to the police who they are. The person therefore
makes the choice whether to release that information.

4. The police could make use (in the form described in 3) of biometrics
captured by private organisations for the persons convenience e.g.
supermarket privilege card. The public may be less resistant to this
then the idea of the police or Home Office keeping this information.

Figure 6. The first 4 ideas generated from the
first and the second workshop – ideas from
the first workshop are above and ideas from
the second workshop are below

Post-workshop interviews conducted with all of the
6 participants individually within 24 hours of the end
of the second workshop revealed their perceptions
about the level of creativity of the ideas. Of the 29
ideas, 25 were considered by at least one participant to
be creative. However, participants had quite different

views about what makes an idea creative. For
example, one participant believed that a creative idea
must be surprising but not necessarily useful. Another
practical and another felt that to be creative the idea
must not have existed before anywhere in any domain.

Figure 7 shows the number of ideas that each
participant thought was creative. The participants
identified more creative ideas from the analogical
reasoning and storyboarding activities in the second
workshop than from the brainstorming and
combinatorial creativity activities in the first
workshop. Another difference is the level of agreement
between participants as to which ideas were creative.
No more than two participants agreed that a particular
requirement from the first workshop was creative,
however most of the ideas from the second workshop
which were identified as creative had at least 3 three
participants in agreement.

1

2

3

4

5

6

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

1

2

3

4

5

6

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15

N
um

be
r 

of
pa

rt
ic

ip
an

t v
ot

es
N

um
be

r 
of

pa
rt

ic
ip

an
t v

ot
es

Creative ideas from first workshop

Creative ideas from second workshop

Figure 7. Creativity of ideas produced during
the workshops

Although the workshops as a whole were seen to be
successful, the post-workshop interviews revealed that
the effectiveness of the activities varied. Participants
claimed the analogical reasoning activity was
particularly effective, even though it was new to the
participants, which caused some of them to have
reservations at the beginning of the activity. The
storyboarding activity was also used to good effect. In
contrast, the combinatorial creativity activity did not
appear as effective at producing creative ideas.
However, the fact that the two activities that produced
the most creative ideas took place in the second
workshop suggests that the activity ordering within the
workshops could be a factor.

The brainstorming activity in the first workshop
was intended both to stimulate creative thinking and to
provide participants with the pre-requisite knowledge
about the bio-metrics domain. The importance of
allowing time for activities that encourage both



19

knowledge building and team building may be
supported by the fact that the outcome of the
combinatorial creativity, which also took place during
the first workshop, was knowledge building rather
than creative ideas as intended.

All participants agreed that they would consider
running this type of workshop in the future due to the
potential benefits that it can provide to PITO’s
requirements engineering processes. This suggests
that, from a practical point of view, whether or not the
workshops generated genuinely creative ideas was less
important than the fact that the workshops enabled
participants to produce ideas for requirements that
would not normally have been elicited.

6. Lessons Learned

In this section we describe 5 lessons learned from
the creativity workshops that both inform PITO’s
future use of creativity workshops in their
requirements processes and provide more general
lessons learned from this experience paper. Space
precludes the inclusion of detailed data that underpins
each lesson learned. Rather each lesson is presented as
process advice that the reader can use in planning and
running creativity workshops.

6.1. Explicitly Encouraging Creativity  Works
In PITO the 2 prototype creativity workshops

succeeded in encouraging the participants to generate
new ideas for policing applications that they believe
would not have generated using existing requirements
processes in the organisation. As such the ideas
generated were new to the participants were often new
rather than radical and innovative – nonetheless this
was perceived by the participants as valuable to PITO.
Requirements acquisition techniques often lead to
divergent activities [22], in which requirements
engineers seek to elicit, acquire, surface, discover and
create as many new stakeholder requirements as
possible. In this regard the creativity workshops
enhance the divergence of requirements early in the
requirements process.

6.2. Creative Thinking Needs to be Built Up
Results from the retrospective interviews with the

participants suggested that the second workshop was
more successful at creating ideas than the first, in that
more participants believed that more ideas generated
in the second workshop were creative. A similar result
was found in the RESCUE workshops – the first
workshop involved several periods in which the
participants cleared the air and understood each others’
positions, before effective creative thinking could take
place [9]. This finding, combined with our
observations and anecdotal evidence from the 2
workshops, suggests that creative thinking requires a
period of preparation and incubation [11] during which

the participants build up knowledge of the problem
domain, a team approach, and confidence in each
others’ abilities. Therefore, do not expect to encourage
creative thinking from the start – it takes time to
happen.

6.3. Making People Uncomfortable Can Make
Them Think Differently

The 2 workshops placed the 6 participants in an
unusual environment, working with different people
with different roles in PITO to undertake unusual
tasks. During some workshop activities some of the
participants found the experience uncomfortable –
some found it challenging to reason analogically,
while others were not used to being told to combine
problems, ideas and technologies together against the
accepted rules and constraints of the domain.
However, responses obtained during the retrospective
interviews suggest this discomfort might be essential
for creative thinking. The creative activities have the
advantage of shaking people out of tried and tested
ways thinking about requirements – an important
precursor to creative requirements engineering.

6.4. Analogies Worked for Some People
The introduction of the analogical reasoning

activity using the ATM domain was greeted by some
skepticism from the participants. However, once
explained, the analogical reasoning worked well for
some participants, but not others. Some participants
demonstrated the ability to create analogical mappings
and transfer knowledge between the domains using
these mappings, while others could not. Previous
research suggests that analogical reuse is cognitively
difficult [20]. This experience supports that, but
reveals that effective facilitation of the mapping
process as described in this paper can enable some
participants to exploit analogical reasoning very
effectively. Structure is critical, in contrast to our
previous experience. Step-wise, very structured
approach to creativity, leaving little to chance.
Mapping-by-mapping reduces cognitive effort, but
nonetheless difficult for some people, so allow for
individual differences.

6.5. Storyboarding Worked for Some People
The storyboarding activity was successful in both

groups, however one group was able to use
storyboards more quickly and effectively than the
other. There is a range of possible reasons for this, and
we do not have all of the data needed to analyse them.
However one observation of this activity was that the
more successful group quickly allocated roles to the
participants – one participant led the storyboard
authoring process, even producing a storyboard of the
storyboard in order to structure ideas. The second
participant acted as a critic to the storyboard as it was
developed, while the third participant, who had good



20

artistic ability, produced the storyboard in response to
instructions from the first 2 participants. In contrast,
the other group delayed the start of its storyboarding
due to an uncertainty over the structure of the story,
and differences of opinion about how to draw the
storyboard. Future storyboarding activities should
impose a clear structure and role allocation on groups
to provide a framework for the thinking creatively and
documenting the results of that thinking. Indeed, this
apparent dichotomy runs throughout our ongoing
planning of creativity workshops – the more successful
you want the workshop to be, the more background
planning and control is needed to ensure that the right
style of creative thinking is encouraged.

7. Conclusions and Future Work

This experience paper reports the prototyping of
adventurous creativity workshops in a real-world
project funded by PITO, the owner organisation. The
main finding was that the workshops were effective, in
that both generated new ideas that might not have
emerged using more traditional requirements
acquisition techniques. . The workshop results were
accepted by PITO as useful. Retrospective interviews
revealed the benefits of some of the activities to the
participants.

The improved design of the workshops overcame
some of the reported problems in the earlier RESCUE
creativity workshops, for example more facilitation for
analogical reasoning and structure for storyboarding
[9], suggesting that our understanding of how to
encourage creative thinking about requirements is
increasing. More specifically, some techniques more
successful than others. During creative thinking it is
important to allow for individual differences between
people. One solution is to design in complementary
but overlapping techniques might be useful.

We will apply the results and lessons learned from
these workshops to a new series of RESCUE creativity
workshops as part of a process with Eurocontrol to
determine requirements for a Departure Manager
system for major European airports. More generally
the experience, as part of an effort to improve
requirements processes in a large UK organisation,
reveals both the opportunities and benefits from
thinking about requirements engineering as a creative
process. It is one more brick in the wall of evidence
that the requirements engineering community needs to
think about requirements processes in new and
exciting ways.

Acknowledgements

The authors wish to thank PITO, and particularly all of
the workshop participants for their time, involvement
and feedback.

References

1. Nomura 2001,
http://members.ozemail.com.au/~caveman/Creative/Ad
min/crintro.htm

2. Haradon & Sutton 2000.
3. Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G., &

Wolf, G. (1989). Out of Scandinavia: Alternative
Approaches to Software Design and System
Development. Human-Computer Interaction, 4(4), 253-
350.

4. Obsorn A.F., 1953, ‘Applied Imagination: Principles
and Procedures of Creative Problem Solving’, Charles
Scribener’s Sons, New York.

5. Isaksen, G. & Dorval, K. (1993) Changing views of
creative problem solving: Over 40 years of continuous
improvement. ICN Newsletter. 3 (1).

6. Daupert, D. (2002) The Osborn-Parnes Creative
Problem Solving manual. Available from
www.ideastream.com/create.

7. Robertson J., 2002, ‘Eureka! Why Analysts Should
Invent Requirements’, IEEE Software July/August
2002, 20-22.

8. Nguyen L., Carroll J.M. & Swatman P.A., 2000,
“Supporting and Monitoring the Creativity of IS
Personnel During the Requirements Engineering
Process,” Proc. Hawaii Int’l Conf. Systems Sciences
(HICSS-33), IIIEEEEEE EEE CCCooommmppp uuuttt eeerrr SSSoooccc iii eee tttyyy .

9. Maiden N.A.M., Jones S. Flynn M., 2003, ‘Innovative
Requirements Engineering Applied to ATM’, to appear
in the ATM’2003 Conference, June 2003, Budapest.

10. Hadamard, J., 1954, ‘An essay on the psychology of
invention in the mathematical field’, New York: Dover.

11. Poincare H., 1982, The Foundations of Science: Science
and Hypothesis, The Value of Science, Science and
Method, Univ. Press of America, Washington 1982.

12. Maiden N. & Gizikis A., 2001, ‘Where Do
Requirements Come From?”, IEEE Software
September/October 2001 18(4), 10-12.

13. Stevens R., Brook P., Jackson K. & Arnold S., 1998,
‘Systems Engineering: Copying with Complexity’,
Prentice-Hall.

14. Andrews D.C., 1991, 'JAD: A Crucial Dimension for
Rapid Applications Development', Journal of Systems
Management, March 1991, 23-31.

15. Nickerson, R.A. (1999) Enhancing creativity. In The
handbook of creativity, edited by R.J. Sternberg (New
York: Cambridge University Press) 392-430.

16. Boden M.A., 1990, The Creative Mind, Abacus,
London

17. Koestler
18. Gick M.L. & Holyoak K.J., 1983, 'Schema Induction &

Analogical Transfer', Cognitive Psychology 15, 1-38.
19. Ross B.H., 1987, 'This is Like That: The Use of Earlier

Problems and the Separation of Similarity Effects',
Journal of Experimental Psychology: Learning,
Memory and Cognition 13(4), 629-639.

20. Maiden N.A.M. & Sutcliffe A.G., 1992, 'Exploiting
Reusable Specifications Through Analogy',
Communications of the ACM. 34(5), April 1992, 55-64.



21

21. Sutcliffe A.G. & Maiden N.A.M., 1998, 'The Domain
Theory for Requirements Engineering, IEEE
Transactions on Software Engineering, 24(3), 174-196

22. Maiden N.A.M. & Rugg G., 1996, 'ACRE: Selecting
Methods For Requirements Acquisition, Software
Engineering Journal 11(3), 183-192.



22



23

Eliciting Efficiency Requirements with Use Cases  
J. Dörr, D. Kerkow, A. von Knethen, B. Paech 

Fraunhofer IESE, Sauerwiesen 6, 67661 Kaiserslautern, Germany  
{doerrj, kerkow, vknethen, paech}@iese.fraunhofer.de

Abstract
Non-functional requirements provide the glue between 
functional requirements and architectural decisions. 
Thus, it is important to elicit and specify the non-
functional requirements precisely. In practice, however, 
they are mostly neglected. In this paper, we sketch an ap-
proach developed in the context of the EMPRESS project, 
which allows efficiency requirements to be elicited in con-
junction with use cases. This is part of a more general, 
experience-based approach to elicit and specify non-
functional requirements in concert with functional re-
quirements and architecture.  

1. Introduction 
The last few years have seen a growing awareness of the 
requirements engineering community for architectural is-
sues and vice versa. Several authors argued convincingly 
for the tight interdependencies between functional re-
quirements (FRs), non-functional requirements (NFRs)
and architectural options (AOs) that need to be made ex-
plicit early, for example, [16], [10].  

While there are many established methods for the specifi-
cation of FRs, for instance, use cases [3], and several ap-
proaches for specifying AOs, for example, patterns [9], 
there is little guidance available on how to elicit and spec-
ify NFRs in concert with FRs and AOs. The problem is 
that different kinds of NFRs, such as efficiency or secu-
rity requirements, need to be treated differently. The dif-
ferent communities concentrating on the different NFRs 
exemplify this. Thus, it seems difficult to define one 
method to cope with all NFRs. 

In this paper, we propose an approach for specifying effi-
ciency requirements in concert with use cases and, if 
available, a high-level architecture. This method is so far 
tailored to efficiency requirements, but we believe that it 
can be generalized also to other NFRs, such as reliability 
requirements. We believe this because our approach is 
based on some general characteristics that can then be 
used for each type of requirement (e.g., efficiency, reli-
ability, maintainablity requirements). 

The main goal of our approach is to achieve a minimal, 
complete and focused set of measurable and traceable 
NFRs. The quality criteria on NFRs mentioned are a sub-
set of the general quality criteria on requirements defined 
by the IEEE-Std. 830 [9]. 

Minimal means that only necessary NFRs are stated so 
that the design space is not restricted prematurely. 

Complete means that all NFRs of the stakeholders 
(e.g., customer and developer) are captured. 

Focused means that the impact of the NFRs on the so-
lution is clear. A NFR, for example, may concern the 
system context (namely the customer processes), the 
system, a FR, or an AO. This supports unambiguity in 
the sense of the IEEE Std. 830. 

Measurable means that a metric is given on how to 
verify that the system satisfies the NFRs. This sup-
ports verifiability and unambiguity in the sense of the 
IEEE Std. 830. 

Traceable means that rationales are given that de-
scribe why the NFR is necessary and how it is refined 
into subcharacteristics. This also supports modifiabil-
ity in the sense of the IEEE Std. 830. 

Our main focus has not been on eliciting consistent NFRs 
so far. However, our approach includes a consolidation 
step, where dependencies between elicited NFRs are 
checked. When specifying means to achieve certain 
NFRs, consistency has to be treated with more attention.  

To accomplish the different quality criteria of the IEEE 
Std. 830, our approach provides:  

a quality model that captures general characteristics of 
efficiency (quality attributes), metrics to measure 
these quality attributes, and means to achieve them. In 
particular, this model reflects views of different stake-
holder roles, such as customer and developer. This 
quality model supports measurability, completeness as 
well as focussedness due to the views. 

a distinction of different types of quality attributes, 
which gives guidance on how to elicit NFRs. This 
specific treatment for the various types supports 
focussedness of the NFRs. 

detailed elicitation guidance in terms of checklists and 
a priorisation questionnaire. The former are derived 
from the quality model and the types of quality attrib-
utes and help to elicit efficiency NFRs in concert with 
use cases and a high-level architecture. The latter is 
used to prioritize high-level quality attributes (i.e., 
maintainability, efficiency, reliability, usability). The 



24

checklists support completeness, the priorization ques-
tionnaire supports the focussedness of the NFRs.

A quality attribute (QA) is a non-functional character-
istic of a system, user task, system task, or organiza-
tion. Quality attributes of the organization include de-
velopment process specific aspects.a template, which embeds use cases into a full-fledged

requirements document and provides specific places 
for documenting NFRs. This template supports trace-
ability from NFRs to FRs, completeness and focuss-
edness.

The distinction between different types of quality
attributes is important for our elicitation process. Each
type of quality attribute is elicited differently (see Sec-
tion 3). QAs can be refined into further QAs. In addi-
tion, QAs can have positive or negative influences on 
each other. A more detailed description of the types of 
QAs and their relationships can be found in Section
2.2.

the use of rationales to justify each NFR. Using ra-
tionales supports minimality of the set of NFRs. 

The paper is structured as follows. In Section 2, we
sketch our terminology and explain the notation of the
quality model. Then, we present our approach by way of
an example. Section 4 summarizes our experience and
Section 5 discusses related work. We conclude with an
outlook on future work. 

A system (e.g., “wireless control and monitor system”)
can be refined into a set of subsystems (e.g., “wireless
network”, “mobile device”). Architectural require-
ments (e.g., “the system shall have a database”) con-
strain the system.

2. Terminology 
We distinguish between two types of tasks: user tasks
and system tasks. User tasks are tasks, a certain user 
has to perform. They are supported by the system
(e.g., “monitoring of certain machines”), but include
some user involvement. System tasks are tasks the sys-
tem performs. In contrast to user tasks, the user is not
involved in system tasks. Tasks can be refined into
further tasks. User tasks can be refined into more fine- 
grained user tasks. Furthermore, user tasks can be re-
fined into parts carried out by the user and system
tasks (e.g., a user task “monitoring machine x” is re-
fined into a set of system tasks such as “system dis-
plays alarm message if machine runs out of filling”).
A task is described by one or more FRs.

This section describes the foundation of our approach.
Subsection 2.1 points out a metamodel that describes the
basic concepts of our approach. Subsection 2.2 gives an 
overview on the “quality model”, which instantiates parts
of the metamodel.

2.1. Metamodel
The metamodel (see Figure 1) describes the main con-
cepts of our approach. Our experience showed, that cer-
tain decisions have to be made during the elicitation of 
NFRs (e.g. does a quality aspect affect a user task, or
rather AOs?). The concepts described in the metamodel
support these decisions. In the following, we explain the
most important elements.

Requirement

Functional Requirement

Non-functional Requirement

Architectural Requirement

Organization

Task

System

Quality Attribute

Organization
Quality Attribute

System
Quality Attribute

User Task
Quality Attribute

Means

ValueMetric Rationale

User Task System Task

SystemTask
Quality Attribute

1

*

1

*

1

*

1

*

1

1..*

describes

1

2..*

refined into

1..*

1..*

justifies

*

*

constrains

1 *

constrains

1

*

measured by

1 1..*

determines

1

1..*

* *

achieved by

*

*has influence on1

*

refined into
*

*
influences

1
*

refined into

Figure 1: The metamodel



25

In Figure 2, QAs are represented by white rectangles. 
Grey rectangles are means that have influence on the re-
lated QA and ovals are metrics to measure the related
quality attribute. There are five different types of QAs in
this quality model (see also metamodel):

A NFR describes a certain value (or value domain) for 
a QA that should be achieved in a specific project.
The NFR constraints a QA by determining a value for 
a metric associated with the QA. For example, the 
NFR “The database of our new system shall handle
1000 queries per second.” constraints the QA “work-
load of database”. The value is determined based on
an associated metric “Number of jobs per time unit”.
For each NFR, a Rationale states reasons for its exis-
tence (e.g., “the user will be unsatisfied if it takes
more than 2 seconds to display alarm message”).

General QAs such as “Time Behaviour” are used to 
structure the QAs on lower levels.

Organizational QAs, such as “Experience”, concern 
the organizational aspects. This also includes devel-
opment process related aspects, such as required
documentations, reviews, etc.

We distinguish problem-oriented refinement (refine-
ment of NFRs according to the constrained QAs) from
solution-oriented refinement of QAs. The latter is
made explicit in terms of means. A means is used to
achieve a certain set of NFRs. In many cases, a means
describes an AO that can be applied to the architecture
to achieve a certain QA (e.g., “load balancing” is used 
to achieve a set of NFRs concerning the QA “work-
load distribution”). However, a means can also be 
process related (e.g., the means “automatic test case
generation” is used to fulfill NFRs regarding “reliabil-
ity”).

System QAs, such as “Capacity”, are QAs related to 
the system and its subsystems (e.g., related to the da-
tabase, secondary storage or network).

User Task QAs, such as “Usage Time”, are related to 
tasks in which the system and the user are involved.

System Task QAs, such as “Response Time”, are re-
lated to system tasks, i.e., tasks that are carried out by
the system, not including the user any more (e.g., cal-
culation of results).

Only the latter four QAs are constraint by NFRs. The first 
type of QA serves as a structuring for the hierarchical de-
composition of the more fine-grained QAs. This structure
is also used for the template for documenting the NFRs.
How the NFRs for the QAs are elicited, depends on the
type of the QA they constrain. This is described in Sec-
tion 3.

2.2. Quality model
A quality model instantiates parts of our metamodel. It 
describes typical refinements of high-level QAs into more
fine-grained QAs, metrics, and means. The idea of the 
quality model is to refine QAs into QAs that are measur-
able, i.e., to QAs to which a metric can be associated. In 
addition, it describes relationships between different QAs. 
Therefore, it captures experience of previous projects.
Our quality model is similar to the goal graphs of, for in-

stance, [12], but emphasizes dependencies, and distin-
guishes between different types of QAs. Figure 2 gives an 
example for such a quality model for the QA “efficiency”.

Four types of relationships can be found in such a quality 
model that relates the various kinds of QAs, means and

metrics. The metamodel in Figure 1 describes the general
types of relationships.

Efficiency
ComplianceTime Behaviour

Throughput
(network)

Response Time

Resource
Utilisation

Capacity

Workload
Distribution

Type and position
of devices

Boot / Start Time Workload

LocalityParallelism

Load Balancing

Mbit/sec. #jobs
/ time unit

% of resource
consumption

Cost /
unit

ExperienceRequired
Documentation

Efficiency

% of resource
consumption

Usage Time

Quality Attribute

Quality Attribute

Quality Attribute

System
Quality Attribute

System Task
Quality Attribute

User Task
Quality Attribute

Quality Attribute
Developer View

Metric

Means

Quality Attribute
Customer View

Quality Attribute Organization
Quality Attribute

Figure 2: Quality model for efficiency 

A QA, such as “efficiency”, is refined into more de-
tailed QAs, such as “time behaviour” and “resource
utilization”.



26

A means has influence on a QA, i.e., it is used to
achieve the NFRs constraining the QA. “Load balanc-
ing”, for example, is influencing “workload distribu-
tion” and used to achieve the constraining NFRs (e.g., 
“The workload for computing the results must be
equally distributed on the two processors”). 

User task QAs are iterated over the use cases (e.g., use
case 1, then use case 2) 

A QA is measured by a metric. The “workload” can, 
for example, be measured by the metric “number of 
jobs per time unit”.

A QA can be positively or negatively influenced by
another QA. If the “workload”, for instance, is higher,
the “response time ” will increase (negative influ-
ence).

Our approach provides a default quality model that can be
used without adaptations by a company. Reasons for do-
ing so can be a lack of time or money. We recommend
tailoring the quality model to the context of each com-
pany and project. In addition, a company might have an
own quality model that shall be used. In this case, it is
very important to agree on the meaning of the different
QAs in the quality model. Our recommendation is to
build a quality model together with the company in a 
workshop. By doing so, the quality model benefits from
the already integrated experience of our reference quality
model and it is tailored to the project and company.

Exp.Based
Quality
model

Identify
dependencies

Reference
model

Check
list

Derive
facilities

Template

Tailor
Quality
Model

Figure 3: Experience based creation of a quality
model

Figure 3 describes the process of tailoring the quality
model to the project and company. The tailored quality
model (experience based quality model) is used as input
to develop checklists and templates for documenting
NFRs.

The structure of the checklists is given by the hierarchy of 
the quality model. General QAs (e.g., time behaviour)
are, therefore, a means for structuring the checklist, while
the QAs at the lowest level (e.g., usage time) are directly 
used to elicit the NFRs constraining them. The type of the
QA influences the way the questions in the checklist are
phrased:

System task QAs are iterated over the use case steps
(e.g., step 1, then step 2) 

System QAs are iterated over the various subsystems
in the system (e.g., database first, then network1)

The structure of the template is also strongly influenced
by the quality model. The NFRs constraining the different
types of QAs are denoted at different places in the tem-
plate:

NFRs constraining the organizational QAs are docu-
mented in an organizational requirements section.

NFRs constraining user task QAs are attached to the 
use case diagrams and are, therefore, documented in a 
use case diagram section. 

NFRs constraining system task QAs are directly at-
tached to each use case in the textual use case descrip-
tion section. Therefore, the use cases have a field
“NFRs”, where each system task oriented QA is 
listed. Below such a system task oriented QA, there is 
a list of the use case steps that express system tasks 
(e.g., response time: step2, step4). The NFRs for each
system task are then expressed at this use case step 
(e.g., response time: step2 - “The system has to re-
spond within 2 seconds”, step4 - “…”). 

NFRs constraining system QAs are denoted at two
places in the template. First, if a NFR constrains a sys-
tem QA of a subsystem (e.g., “the database has to
store 100000 entries”) that is used in a use case, the
NFR is attached to that use case. Therefore, each use 
case also includes a list of system QAs in the field 
NFRs. Below such a system QA, there is a list of all 
subsystems (e.g., capacity: database, memory). The
NFRs for each subsystem are then expressed at this 
subsystem (e.g., capacity: database – “the system has 
to store 100000 entries”, memory – “…”). Second, the
system NFRs are documented in the section of task
overspanning NFRs. The structure is similar to the
structure in the use cases (i.e., there is a list of all sys-
tem QAs, below each system QA there is a list of all 
subsystems), but it aggregates the NFRs from all use
cases and the ones that are not specific for one use
case. This is done because a consolidation step 
searches for dependencies between NFRs concerning
one subsystem.

3. The elicitation process 
As a result of the process “derive facilities” described
above, the requirements template is created. Figure 4 
shows a subset of this template.

Organizational QAs are used in initialization check-
lists that focus at general aspects in contrast to the
concrete system or its task.



27

1. Organizational requirements
1.1. Process requirements
1.2. Stakeholder requirements

2. Task descriptions
2.1. UC diagram
2.2. Textual UC description

3. Task overspanning requirements
3.1. Textual description of Task overspanning NFR´s Figure 5 shows the pre-required documents and the

activities to create them.
Figure 4: Subset of the requirements template 

The elicitation process is guided by our experience that
various entities (e.g., user task, system task) have differ-
ent types of QAs. Each NFR has to be elicited under con-
sideration of this entity. In addition, if an entity is de-
scribed by one or a set of documentation elements (e.g., a 
user task is described by a use case, a system task is de-
scribed by a step of a use case), the NFR has to be docu-
mented together with this entity.

In the following sections, we describe the activities to be
performed within the elicitation process. We use exam-
ples from a case study of the CWME project from Sie-
mens about a wireless framework for mobile services.
The application enables up to eight users to monitor pro-
duction activities, manage physical resources, and access 
information within an industry plant. The user can receive 
state data from the plant on his mobile device, send con-
trol data from the mobile device to the plant components,
position the maintenance engineer and get guidance to fix
errors on machines. The case study is based on a real sys-
tem and was provided by Siemens in the context of the
Empress project.

3.1. Prerequisites 
The elicitation process is based upon the documentation
of

the system´s functionality (behavior) described by use
cases (Ucs),

the physical architecture, if available, and further im-
plementation constraints (e.g. constrained HW-
resources or constraints derived from the operating
systems), and 

assumptions about the average and the maximum
amount of data used in the system. The amount of data
for each use case is determined under consideration of
the amount of data for the entire system.

Since some activities of the elicitation and documentation
process are closely related to the functionality, the com-
pleteness of the NFRs is limited by the completeness of
the FRs. 

As described above, some of the QAs are associated to
user tasks and system tasks. Therefore, we recommend

use cases to describe the FRs. This seems to be beneficial, 
because QAs associated to user tasks can directly be re-
lated to use cases. QAs associated to system tasks can di-
rectly be related to use case steps. However, we believe
that our approach can be applied to other notations as 
well.

Activities “Prioritize” and “Chose quality models”:
Many times, budget and time limitations oblige to pri-
oritize and select a subset of high-level QAs most im-
portant for a project. This activity is supported by a
prioritisation questionnaire developed at IESE. It 
builds a ranking order for the QAs described in ISO
9126 (e.g., maintainability, efficiency, reliability, and 
usability). The questionnaire is described in more de-
tail in [17]. Based on this ranking order, quality mod-
els for certain high-level QAs relevant for the project
can be chosen. 

Activity “Elicit FRs”: In this step, the FRs are elicited
and documented in form of a graphical use case-
diagram. Each use case included in the diagram is
later associated to NFRs that constrain QAs of user
tasks. In addition, each use case is described textually. 
The textual description includes an interaction se-
quence between actor and system. This description al-
lows us later to associate NFRs that constrain QAs of
system tasks to use case steps.

Project
Quality
models

Sys
Arch

UC Data assum.

Worst
case

Average
case

UC Data assum.

Worst
case

Average
case

4. Define
Scenarios

overall

Data assumption

Worst
case

Average
case

Data assumption

Worst
case

Average
case

5. Define
Scenarios
each UC

UC

UC
diagram

Txt UC
Description

UC

UC
diagram

Txt UC
Description

2. Choose
Quality
models

Priorit
ization

list

1. PrioritizeQuest
ionnaire

6.Describe
Phys.

Sys. Arch.

3.
Elicit funct.

Req´s

Template

Figure 5: Development of prerequisites 

Activities “Define scenarios” and “Define scenarios 
for each UC”: In order to be able to imagine NFRs, 
maximum and average usage data for the overall sys-
tem, as well as for each use case are elicited and docu-
mented.

Activity “Describe physical system architecture”:
Some NFRs can only be elicited if the detailed physi-
cal system architecture is known. So the architecture



28

To avoid unnecessarily design decisions, the customer is
instructed to scrutinize this NFR again, just as Socrates 
used to try to get to the bottom of statements over and
over. This form of Socratic dialogue serves to uncover the
rationale behind that NFR and prevents the customer from
constraining the system unnecessarily. NFRs are reformu-
lated until they reflect the rationale. It is a good practice
to document the rationale as well [5].

must be elicited and documented, whenever it is avail-
able.

3.2. Elicitation and documentation of NFRs 
Figure 6 shows the activities and documents needed to
elicit and consolidate NFRs. A checklist that is derived
from the quality model as described in Section 2.2 guides
each activity. Activities are explained in more detail in 
the following. We distinguish between different elicita-
tion activities: user task NFR elicitation, system task NFR
elicitation and system NFR elicitation. Each activity fo-
cuses on eliciting NFRs that constrain one certain type of
QA (i.e., organization QA, user task QA, system task QA, 
and system QA). The user task NFR elicitation is based
on use cases. The system task NFR elicitation is based on 
the interaction sequence described for each use case. The
system NFR elicitation is based on physical subsystems
and interaction sequences. 

As soon as the now elicited and justified NFRs are
phrased in a measurable way (this is the case if the metric
attached to the QA in the quality model can be applied to
the requirement), it is documented in the chapter “organ-
izational requirements” of the template.

Activity  “Elicit user task NFRs”

In this activity, NFRs are elicited that constrain QAs of
user tasks. In our case study, the QA “usage time” in-
cluded in the quality model is a user task QA. These QAs 
are documented for each use case included in the use case
diagram, because each use case represents a user task. As
shown in Figure 7, NFRs are added to use cases with the
help of notices.

Activity “Elicit organizational NFRs”

In this activity, NFRs are elicited that constrain QAs of
the organization. The customer, for example, might have
certain requirements concerning the organizational struc-
ture and experience of a supplier. The customer is asked 
to phrase these requirements. This process is guided by a 
set of clues in form of a checklist. These clues suggest
thinking about domain-experience, size, structure or age
of the supplier organization, as well as required standards
(e.g. RUP), activities (e.g. inspections), documents or no-
tations (e.g. statecharts). In our case study, some of the 
requirements expressed were:

In our case study the requirement “the use case shall be
performed within 30 min.” was attached to the use case
“Handle alarm”. Again, a justification as described above 
is performed to prevent unnecessary anticipated design 
decisions. The resulting rationale “breakdown of plant
longer than 30 min. is too expensive” is documented in
parenthesis behind the NFR.

“The supplier needs at least three years of experience 
in the domain of access-control.“ 

“The supplier has to create a specification document.”

Txt
Description
UC oversp

NFR´s

Stake-
holderProcess Stake-
holderProcess

System
Architecture

4. Elicit
System
NFR´s

UC Scenarios

Worst
case

Average
case

UC Scenarios

Worst
case

Average
case

Refined
UC

diagram

Txt UC
Descr.

Of NFR´s

Refined
UC

diagram

Txt UC
Descr.

Of NFR´s

UC

UC
diagram

Txt UC
Description

UC

UC
diagram

Txt UC
Description

System
task

QA´s

User
task

QA´s

System
QA´s

Dependencies
Between

QAs
Consolidate

Orga
QA´s

3. Elicit
System task

NFR´s

2. Elicit
User task

NFR´s

1. Elicit
Orga

NFR´s

Check
List 2

Check
List 3

Check
List 4

Check
List 1

Check
List 5

Figure 7: Use cases with attached user task NFRs 

Activity “Elicit system task NFRs” 

In this activity, NFRs are elicited that constrain QAs of
system tasks. The elicitation is based on the detailed in-
teraction sequence (also called flow of events) docu-
mented in the use case. For this activity, maximum and
average usage data (Figure 5 shows the development
process of this information) are needed. The checklist 
gives clues of thinking of scenarios where the maximum
and the average amount of data are processed in the sys-
tem. With these scenarios in mind, every step and every 
exception described by the use case description are 
checked. Elicited NFRs are documented. Figure 8 shows 
the textual description of the use case “handle alarm”. It 

Figure 6: Elicitation process for NFRs 



29

describes that the system shows an alarm and where the 
alarm was produced. As reaction to this, the user ac-
knowledges the alarm, so other users know s/he is taking
care of it.

Figure 8: UC steps with attached system task NFRs

As a result of the elicitation and documentation process, 
NFRs that constrain the system task QA “response time”
were documented. The NFR “at least in 5 sec.” was at-
tached to the use case step 2 “System shows alarm and 
where the alarm was produced” and the NFR “just one 
click” was attached to the users reaction described in use
case step 3. Both requirements were documented in the
NFRs field within the textual description of the use case, 
after being justified by the customer in the Socratic dia-
logue. The rationale lead to the statement, that the NFRs
elicited were assumed times only and could be changed, if
necessary. As shown in Figure 7 and Figure 8, the ration-
ale was documented in parenthesis.

Activity “Elicit system NFRs”

In this activity, NFRs are elicited that constrain QAs of
the system and subsystems. In this activity, again maxi-
mum and average usage data is needed. Additionally, the
architecture of the physical subsystems is used, if avail-
able. The subsystems and architecture constraints on our 
case study are shown in Figure 9. 

Figure 9: Constraints on system-architecture 

The checklist gives instructions on how to consider the
scenarios while phrasing NFRs for each use case descrip-
tion and physical subsystem of the system architecture. 

As Figure 10 shows, the NFR field of the use case de-
scription is segmented into NFRs related to every physi-
cal subsystem.

Figure 10: UC with attached system NFRs 

In the use case “handle alarm”, NFRs for the QA “capac-
ity” could only be phrased for the physical subsystem
“PDA”. The subsystem shall have a maximum capacity of
64 MB and shall be able to handle up to 50 alarms at the
same time. The rationale for this NFR is the need for us-
age of standard components available at the consumer
market. This rationale is documented as well. 

The QA “throughput” does only apply to the subsystem
“Network” by definition. Our experience shows, that
some QAs are related to only a subset of subsystems. This
relationship is documented in the quality model.

The elicited NFRs for single subsystems are documented
within the textual use case description as well as in the
section “use case overspanning textual description of 
NFRs”. This is done to be able to consolidate the re-
quirements over several use cases.

Activity  “Consolidate”

In this activity, the NFRs are analysed for conflicts. This
activity includes two sub-activities. In the first, NFRs for
one physical subsystem are analysed over all use cases. 
The checklist gives hints on how to identify conflicts and 
how to solve them.  It has to be checked, for example,
whether NFRs can be achieved if use cases are executed
in parallel. In the second sub-activity, NFRs that con-
strain different QAs are validated under consideration of 
the dependencies documented within the quality model.

The consolidation activity discovered an important con-
flict between the determined throughput requirements and 
the defined hardware constraints. As shown in Figure 10
one of the throughput requirements stated:

“The network between secondary database and PDA 
shall be able to deal in worst case with 8 people that
download 1 doc (size of 8 docs constrained to
<55Mbit) / person within 5-10 secs.”

The restriction of the total size of 8 documents to 55
Mbits was added because the hardware constraints shown 



30

in Figure 9 constrained the network to a 11Mbit/sec 
WLAN. The additional requirement would not been 
found without the consolidation activity. 

4. Experience  
We have used this approach so far in a case study with 
Siemens in the Empress project and in a workshop with 
10 practitioners. In the case study, we spent half a day 
with the customer in discussing and tailoring the default 
quality model to the case study project and half a day in 
eliciting the NFRs. The customer acknowledged that the 
time was very worthwhile as he discovered many new 
NFRs he had not been aware of before. Also, it helped 
him to specify them more precisely. In the workshop, we 
spent one hour explaining our method and then within 
another two hours we interactively went through the 
checklists and filled the template. Again, the feedback 
was very positive as the participants acknowledged that 
this was the first systematic method they had seen to elicit 
efficiency NFRs. They particularly liked the idea of the 
quality model, checklists, and template to capture experi-
ence on NFRs.  In addition, they liked the use of use 
cases and the architecture to ensure completeness and 
ease traceability. They also pointed out the need for cap-
turing the rationale and a supporting tool environment. 

5. Related work 
At last year´s REFSQ we presented the following chal-
lenges for a method for the integrated elicitation and 
specification of FRs, NFRs and AOs [16]:  

Issue 1: Adequate abstraction levels for the elicitation 
and alignment of FR, NFR and AOs 

Issue 2: Views of different stakeholders in the elicita-
tion of NFRs, FRs and AOs 

Issue 3: Identification of dependencies among FRs, 
NFRs and AOs 

Issue 4: Compact description of the solution space

In this paper, we concentrate on the first two issues The 
quality model contains abstract descriptions of NFRs (in 
terms of QAs) and AOs (in terms of means). Thus, to 
solve issue 1, we provide two main levels of abstraction. 
Within the quality model, QAs are refined on as many 
levels as necessary to distinguish different aspects. With 
respect to issue 2 (views), we distinguish developer and 
customer view. We do not support negotiation explicitly. 
However, by providing a standardized terminology in 
terms of the quality model, we help reducing conflicts and 
misunderstanding. The checklists make sure that all rele-
vant aspects are considered.

We also give some hints on how to deal with issue 3 and 
4.  For dependencies again the quality models helps iden-

tifying typical dependencies. This is elaborated in the 
checklists. With respect to issue 4 (assessment), we use 
rationale techniques to capture decision making. The 
framework for the full-fledged method is described in 
[17]. The main achievement of this paper is a detailed de-
scription of the elicitation of efficiency requirements with 
the help of the checklists. 

Further related work can be found in the communities of 
requirements engineering, architecture design and per-
formance engineering: 

Within requirements engineering, [2] provides a general 
method for specifying NFRs. It also gives specific advice 
for how to capture performance requirements with goal 
graphs. However, the emphasis is on the satisfycing step 
where means are elicited to achieve performance. In con-
trast, we focus on using use cases to elicit the customer 
view. [4] seems to be most similar, since it also combines 
use cases and NFRs. There are, however, essential differ-
ences. While we focus on elicitation of NFRs, Cysneiros 
and Leite focus on satisfycing NFRs. This term was 
coined in [2] to describe the fact that NFRs are not satis-
fied, but there are several ways to achieve them. Thus, in 
[4] use cases and NFRs are elicited separately and then 
combined to make sure that the use cases satisfice the 
NFRs. For example, because of an NFR new functionality 
is added into the use case diagram or into the steps of the 
use case description. In contrast, we use the use cases to 
elicit measurable NFRs. The same comment applies to 
[15] which also relates use cases and NFRs after both 
have been elicited. Furthermore, they only use high-level 
quality attributes, such as efficiency. 

Another approach developed for security requirements is 
the elicitation of NFRs by using Mis-Usecases [1]. Those 
are an excellent means to analyze security threats, but in-
appropriate to express security requirements explicitly in 
a measurable way, as discussed in [7]. The approaches 
presented by [7] and [20] are very similar to our activities 
of user task level elicitation. Our results show, that not 
every quality attribute can be expressed by documenting a 
task. There are NFRs that can only be elicited and ex-
pressed using descriptions of system components and 
flows of events not explicitly related to the quality attrib-
ute. We have also learned, that a quality attribute such as 
efficiency can be understood in many different ways by 
different stakeholders. The definition of the concept and 
finding dependencies to other attributes are also part of 
the elicitation process. 

As exemplified by last year´s STRAW workshop, in the 
architecture community several approaches rely on goal 
graphs for specifying NFRs and FRs and their dependen-
cies [10][6][8][11][13]. In these approaches, the graph 
captures the actual FRs and NFRs. In contrast, we only 



31

use the graph to represent dependencies between quality 
attributes and we place the NFRs in the template.  

In the performance community it is emphasized, that per-
formance issues are not suitably integrated in regular 
software engineering processes [14]. This is attributed to 
education issues, single-user and small database mindsets 
and in particular, lack of scientific principles and models. 
The main emphasis of this community is to create just 
these models, e.g., queuing models. So, for example [18] 
also uses use cases in the representation of use case maps 
in combination with efficiency NFRs. As for [4], how-
ever, it is already presupposed that the NFRs have been 
elicited adequately. The main emphasis is then to create a 
queing network reflecting the paths of the use case maps 
and the NFRs.  

6. Conclusion  
In this paper, we have presented an approach for eliciting 
and documenting efficiency requirements in concert with 
use cases and a high-level architecture. There are two ma-
jor innovations. One is the use of a quality model and 
quality attribute types to capture general knowledge on 
NFRs, while specific NFRs are captured in a template. 
The other are detailed checklists on how to elicit NFRs in 
concert with use cases and architecture. With this ap-
proach, we achieve a minimal, complete and focused set 
of measurable and traceable NFRs. There is first evidence 
from practitioners that this approach is worthwhile.  

While so far we have concentrated on efficiency, we be-
lieve that this approach can be generalized to other high-
level quality attributes, such as reliability or maintainabil-
ity. This is because of the use of our meta model and our 
quality model.  We assume that the defined concepts, 
such as the different types of QAs, metrics, and means 
can be applied to other  high-level quality attributes as 
well. The main open question is whether the distinction 
between task and system-oriented QAs also gives helpful 
guidance for eliciting specific NFRs for other quality at-
tributes. This question is the focus of our current work. 
After that, we will continue working on the other issues 
mentioned above, for example, notations that support the 
identification of dependencies between NFRs. 

7. Acknowledgements 
We thank our colleagues for fruitful discussion within the 
IESE-Empress-Team. We acknowledge the ITEA project 
EMPRESS for partly funding our research. Furthermore, 
we want to thank all partners in the ITEA project EM-
PRESS that contributed to our research. In particular, we 
want to thank Ricardo Jimenez Serrano (Siemens) for 
providing a case study to validate our approach and for 
taking over the role of the customer.  

References
[1] Alexander, I., “Misuse Case Help To Elicit Nonfunctional 
Requirements”, IEE CCEJ, 2001, 
[2] Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.,“Non-
Functional Requirements in Software Engineering”, Kluwer 
Academic Publishers, 2000 
[3] Cockburn A., Writing Effective Use Cases, Addison Wesley 
2001
[4] Cysneiros, L.N., Leite, J.C.S.P, “Driving Non-Functional 
Requirements to Use Cases and Scenarios”, XV Brazilian Sym-
posium on Software Engineering, 2001 
[5] Dutoit, A. H., B. Paech, P., “Rationale Management in Soft-
ware Engineering. In: S.K. Chang (Ed.), “Handbook of Software 
Engineering and Knowledge Engineering. World Scientific, De-
cember 2001. 
[6] Egyed, A., Grünbacher, P., Medvidovic, N., refinement and 
evolution issues in bridging requirements and architecture – the 
CBSP approach, STRAW 2001 
[7] Firesmith, D., “Security Use Cases”, in Journal of Object 
Technology, vol. 2, no. 3, May-June 2003, pp. 53-64. 
[8] Gross, F., Yu, E., “Evolving system architecture to meet 
changing business goals: an agent and goal-oriented approach”, 
STRAW 2001 
[9] IEEE Recommended Practice for Software Requirements 
Specifications, IEEE Std. 830-1998 
[10] In, H., Boehm, B.W., Rodgers, T., Deutsch, W., "Applying 
WinWin to Quality Requirements: A Case Study", ICSE 2001, 
pp. 555-564, 2001 
[11] In, H., Kazman, R., Olson, D., From requirements negotia-
tion to software architectural decisions, STRAW 2001 
[12] ISO/IEC 9126-1:2001(E), “Software Engineering - Product 
Quality - Part 1: Quality Model”, 2001 
[13] Liu, L., Yu, E., From requirements to architectural design – 
using goals and scenarios, STRAW 2001 
[14] Menasce, D.A., “Software, Performance or Engineering”, 
Workshop on Software and Performance, pp. 239-242, 2002 
[15] Moreira, A., Brito, I., Araújo, J., "A Requirements Model 
for Quality Attributes", Early Aspects: Aspect-Oriented Re-
quirements Engineering and Architecture Design, workshop da 
1st International Conference on Aspect-Oriented Software De-
velopment, University of Twente, Enschede, Holland, 22-26 
April , 2002 
[16] Paech, B., Dutoit, A., Kerkow, D., von Knethen, A.: „Func-
tional requirements, non-functional requirements and architec-
ture specification cannot be separated – A position paper”, 
REFSQ 2002 
[17] Paech, B., von Knethen, A., Doerr, J., Bayer, J., Kerkow, 
D., Kolb, R., Trendowicz, A., Punter, T., Dutoit, A., „An ex-
perience based approach for integrating archiecture and re-
quirements engineering “, accepted for ICSE-workshop 
STRAW 2003 
[18] Petriu, D., Woodside, M., “Analysing Software Require-
ments Specifications for Performance”, Workshop on Software 
and Performance, p.1-9, 2002 
[19] Shaw, M., Garlan, D., “Software Architecture – Perspec-
tives on an emerging discipline” Prentice Hall, 1996 
[20] Sindre, G. & Opdahl, A., „Eliciting Security Requirements 
by Misuse Cases, Proc. TOOLS Pacific 2000, pp 120-131, 20-
23 November 2000 
[21] Trochim, W. M. K., “The Research Methods Knowledge 
Base”, Atomic Dog Pub Inc., Cincinnati, 2001 



32

[22] von Knethen, A.,  Paech, B., Houdek, F.,  Kiediasch, F., 
“Systematic Requirements Recycling through Abstraction and 
Traceability”, RE 2002 



33

Post-Release Analysis of Requirements Selection Quality 
- An Industrial Case Study

Lena Karlsson1, Björn Regnell1, Joachim Karlsson2, Stefan Olsson2

Abstract

The process of selecting requirements for a release of a
software product is challenging as the decision-making is
based on uncertain predictions of issues such as market
value and development cost. This paper presents a method
aimed at supporting software product development organ-
isations in the identification of process improvement pro-
posals to increase requirements selection quality. The
method is based on an in-depth analysis of requirements
selection decision outcomes after the release has been
launched to the market and is in use by customers. The
method is validated in a case study involving real require-
ments and industrial requirements engineering experts.
The case study resulted in a number of process improve-
ment areas relevant to the specific organisation and the
method was considered promising by the participating
experts.

1 Introduction

This paper presents a method for identifying improvement
areas of the requirements selection process in a market-
driven software product development context. The method
is called PARSEQ (Post-release Analysis of Requirements
SElection Quality) and is based on retrospective examina-
tion of decision-making in release planning, at a time
when the consequences of requirements selection deci-
sions are visible. PARSEQ is applied in a case study
where the requirements selection for a particular release of
a specific software product is analysed and improvement
areas that are relevant to the studied software organisation
are identified.

PARSEQ is intended to be used by software organisa-
tions that operate in a market-driven context, offering soft-
ware products to many customers on an open market.
Market-driven requirements engineering (RE) differs from
customer-specific RE in several ways, for example in the
characteristics of stakeholders and schedule constraints
[15, 17]. Requirements are often invented by the develop-
ers as well as elicited from potential customers with differ-
ent needs [13], and it is common to use a requirements

database that is continuously enlarged with new candidate
requirements [6, 14]. Commonly, market-driven software
developing organisations provide successive releases of the
software product and release planning is an essential activ-
ity [2, 3]. A major challenge in market-driven RE is to pri-
oritise and select the right set of requirements to be
implemented in the next release [13], while avoiding con-
gestion in the selection process [14]. This decision-making
is very challenging as it is based on uncertain predictions
of the future, while crucial for the product’s success on the
market [2, 10].

Given issues such as uncertain estimations of require-
ments market value and cost of development, it can be as-
sumed that some requirements selection decisions are non-
optimal, which in turn may lead to software releases with a
set of features that are not competitive or satisfy market ex-
pectations. It is only afterwards, when the outcome of the
development effort and market value is apparent, it is pos-
sible to tell with more certainty which decisions were cor-
rect and which decisions were less accurate. But by looking
at the decision outcome in retrospect, organisations can
gain valuable knowledge of how to improve the require-
ments selection process and increase the chance of market
success.

In [16, 4], post-mortem evaluations are discussed in a
project management context. An evaluation of the project’s
performance after it has been completed is useful both for
personal and organisational improvement and can be con-
ducted as an open discussion of the strengths and weak-
nesses of the project plan and execution. Furthermore,
much can be learned about organisational efficiency and
effectiveness by this kind of evaluation, which offers an in-
sight into the success or failure of the project. The lessons
learned can be used when planning forthcoming projects to
improve project performance and prevent mistakes. Con-
tinuous process improvement is important in the maturity
of software development and, in particular, requirements
engineering is pointed out as a critical improvement area in
a maturing organisation [12]. A recent process improve-
ment study based on analysis of defects in present products
is reported in [11].

The PARSEQ method is evaluated in a case study,
where requirements selection decisions for an already re-
leased software product were revisited by the decision-
makers of the specific organisation. The market value and

2Focal Point AB,
Linköping, Sweden

{joachim.karlsson, stefan.olsson}@focalpoint.se

1Department of Communication Systems,
Lund University, Sweden

{lena.karlsson, bjorn.regnell}@telecom.lth.se



34

development cost of the requirements that were candidates
for a previous release that was launched 18 months earlier,
were re-estimated based on the knowledge gained during
the two following releases. The re-estimation resulted in a
new priority order, which in turn suggested that some se-
lected requirements should have been postponed and some
deferred requirements should have been selected for that
release. Each such suspected inappropriate selection was
analysed in order to understand the grounds for each deci-
sion, which in turn lead to the identification of several ar-
eas of process improvements.

The paper is structured as follows. Section 2 presents
the PARSEQ methods and its main steps. In Section 3, the
case study operation is described and the main results are
reported. Section 4 discusses the validity of the findings
and the generality of the approach outside the specific case
study context. Conclusions and directions of further re-
search are given in Section 5.

2 The PARSEQ Method

Retrospective evaluation of software release planning
may give a valuable input to the identification of process
improvement proposals. In particular, post-release analy-
sis of the consequences of previous decision-making may
be a valuable source of information when finding ways to
improve the requirements selection process. 

The PARSEQ method is based on a systematic anal-
ysis of candidate requirements from previous releases. By
identifying and analysing a set of root causes to suspected
incorrect requirements selection decisions, it is hopefully
possible to find relevant improvements that are important
when trying to increase the specific organisation’s ability
to plan successful software releases.

In order to perform the PARSEQ method the follow-
ing foundation practices are required:

• A database with continuously incoming requirements
that are dated at arrival and tagged with a refinement
state.

• Methods for estimating each requirements’ cost and
value. The estimations are saved in the database.

• Multiple releases of the product and the requirements
from prior releases are saved in the database.

• Employees who have decision-making experience
from prior releases are available.

PARSEQ is divided into 4 steps: requirements sam-
pling, re-estimation of cost and value, root cause analysis,
and elicitation of improvements, as shown in Fig 1. The
method uses a requirements database as input and assumes
that information is available in the database regarding
when a requirement is issued and in which release a re-
quirement is implemented. The output of the method is a
list of process improvement proposals. Each step in
PARSEQ is subsequently described in more detail.

Requirements sampling. The main input to the post-re-
lease analysis is a list of requirements that were candidates
for a previous product release that now has been out on the
market for a time period long enough to allow for an as-
sessment of the current market value of its implemented
requirements. First, such a relevant previous release is se-
lected (subsequently called reference release). Secondly,
the requirements database is examined and those require-
ments that were candidates for the reference release are re-
trieved. The previous candidates are requirements that
were suggested and dated prior to the reference release,
but were not implemented before the reference release, i.e.
the candidate requirements were either implemented in the
reference release or in a subsequent release, or they were
rejected.

The purpose of the sampling is to compose a reason-
ably small but representative sub-set of requirements,
since the complete database may be too large to investi-
gate in the post-release analysis. The sample should in-
clude requirements that were selected for implementation
in the reference release as well as postponed or rejected re-
quirements. The requirement set is thereby useful for the
analysis as it consists of typical examples of release plan-
ning decisions.

The requirements sampling can be performed in a
number of ways, such as concentrating on a special market
segment or on a difficult part of the product or on particu-

Fig. 1.  An outline of the activities and products of the 
PARSEQ method.

Requirements
sampling

Re-estimation of
value and cost

Root cause
analysis Root

causes 

Post-
factum
priority
list

Elicitation of
improvements Process

improvement
proposals

Sub-set of
previous 
candidates

Re-estimation of
Post-
release
priority
list

Requirements
database



35

larly difficult decisions. However, if the sample is sup-
posed to represent the whole product and its market, the
sample should be as broad as possible. The following
types of requirements may then be excluded:

• Very similar requirements, since they do not extend
the sample.

• Requirements dated several releases ago, as they may
have evolved out of scope.

• Requirements dated recently, since their cost and value
are not yet estimated.

• Requirements estimated to have a very long or very
short implementation time, as they are atypical and
likely to be split or joined.

The output from the requirements sampling is a rea-
sonable amount of requirements, high enough to be repre-
sentative, yet low enough to allow the following steps of
PARSEQ to be completed within reasonable time.

Re-estimation of value and cost. The requirement sam-
ple is input to the next step of PARSEQ, where a re-esti-
mation of current market value and actual development
cost is made in order to find suspected inappropriate deci-
sions that can be further analysed. As the reference release
has been out on the market for a while, a new assessment
can be made, which applies the knowledge gained after the
reference release was launched, which presumably should
result in more accurate priorities. The re-estimation is
made to find out how the organisation had decided for the
reference release, i.e. which requirements that would have
been selected, if they knew then what they know now.
With todays knowledge, about market expectations and
development costs, a different set of requirements may
have been selected for implementation in the reference re-
lease. If this is not the case, either the organisation has not
learned anything since the planning of the reference re-
lease, or the market has not changed at all. 

The implemented requirements have a known devel-
opment cost (assuming that outcome of the actual imple-
mentation effort is measured for each requirement), but
the postponed or rejected requirements need to be re-esti-
mated based on the eventual architectural decisions and
the knowledge gained from the actual design of the subse-
quent releases.

By using, for example, a cost-value prioritisation ap-
proach with pairwise comparisons [8, 9], an ordered prior-
ity list can be obtained where the requirements with a
higher market value and a lower cost of development are
sorted in the priority order list before the requirements
with a lower market value combined with a higher devel-
opment cost.

The purpose of the re-estimation is to apply the
knowledge that has been gained since the product was re-
leased, to discover decisions that would have been made
differently today. The discrepancies between the decisions
made in the planning of the reference release and the post-

release prioritisation are noted and used in the root cause
analysis. The output of this step is thus a list of require-
ments that was given a high post-release priority but were
not implemented in the reference release, as well as re-
quirements with a low post-release priority but still imple-
mented in the reference release.

Root cause analysis. The purpose of the root cause anal-
ysis is to understand on what grounds release-planning de-
cisions are made. By discussing the decisions made in
prior releases, it may be possible to create a basis for the
elicitation of process improvement proposals. 

The output of the re-estimation, i.e. the discrepancies
between the post-release prioritisation and what was actu-
ally selected for implementation in the reference release, is
analysed in order to find root causes to the suspected inap-
propriate decisions. This analysis is based on a discussion
with persons involved in the requirements selection proc-
ess. The following questions can be used to stimulate the
discussion and provoke insights into the reasons behind
the decisions:

• Why was the decision made?

• Based on what facts was the decision made?

• What has changed since the decision was made?

• When was the decision made?

• Was it a correct or incorrect decision?

Guided by these questions, categories of decision
root causes are developed. Each requirement is mapped to
one or several of these categories to illustrate the decision
disposition. This mapping of requirements to root cause
categories is the main output of this step together with the
insights gained from the retrospective reflection.

Elicitation of improvements. The outcome of the root
cause analysis is used to facilitate the elicitation of im-
provement proposals. The objective of this last step of
PARSEQ is to arrive at a relevant list of high-priority areas
of improvement. The intention is to base the discussion on
strengths and weaknesses of the requirements selection
process and to identify changes to current practice that can
be realised. The following questions can assist to keep fo-
cus on improvement possibilities:

• How could we have improved the decision-making?

• What would have been needed to make a better deci-
sion?

• Which changes to the current practices can be made to
improve requirements selection in the future?

The results of PARSEQ can then be used in a situated
process improvement programme where process changes
are designed, introduced and evaluated. These activities
are, however, out of the scope of the presented method.



36

3 Case Study

PARSEQ was tried out in a case study to investigate its
feasibility and gain more knowledge for future research
on post-release analysis of requirements selection as a
vehicle for process improvement. In the first section of
this chapter, the case study site and context is described as
well as the tool used in the study. Next, the realisation of
the PARSEQ method is described, i.e. how each step of
the method was carried out in the case study. Finally, the
results from the case study are reported, including a
number of improvement proposals.

3.1 Background

The case study site is a small-sized organisation develop-
ing stand alone software packages. The organisation
stores the requirements for the software package in a
database that contains already implemented requirements
as well as suggestions for new requirements. Each
requirement is tagged with a certain state to describe its
level of refinement. Examples of states include New,
Accepted for prioritisation, Accepted for implementation
and Done, see Fig. 2. When a requirement for some rea-
son is not appropriate for the package, its state is set to
Rejected. Other states include Clarification needed, Insig-
nificant improvement, Badly documented, Duplicate and
Draft. 

To analyse the requirements in the database a com-
mercial tool for product management and requirements
management, Focal Point1 was applied. Focal Point has
capabilities for eliciting, reviewing, structuring, and prior-
itising requirements as well as for planning optimal releas-
es that maximise the value for the most important
customers in relation to development time and available
resources. One prioritisation method in Focal Point is pair-
wise comparisons [8]. It is helpful for keeping up concen-

tration and objectivity and Focal Point also provides solu-
tions for reducing the number of comparisons and
motivating the priorities. This tool also aids in visualising
the decision in a number of different chart types. Due to re-
dundancy of the pair-wise comparisons, the tool also in-
cludes capabilities such a consistency check that describes
the amount of judgement errors that are made during the
prioritisation. 

3.2 Operation

The participating anonymous organisation was given the
task to use PARSEQ to reflect on a set of decisions made
during prior releases. The case study was executed during
a one-day session, with approximately 5 hours of efficient
work.

Requirements sampling.  A release that was launched 18
months ago was selected as reference release, and since
then another release has been launched and yet another
one is planned to be released in the near future.

The requirements database contains more than 1000
requirements that were issued before the reference release
and implemented in either that release or postponed to one
of the following ones. Of these requirements, 45 was con-
sidered a reasonable number to extract. The requirements
were equally allocated over the three releases: A, B and C,
i.e. 15 were implemented in the reference release A, 15 in
release B and another 15 were planned for release C.

Note that the releases were not equally large in terms
of number of requirements, i.e. the samples are not repre-
sentative. The 15 requirements from release A were select-
ed among 137 requirements, while the releases B and C
only consisted of 28 and 26 requirements, respectively as
shown in Fig. 3. 

The requirements were selected randomly from a
range where the ones estimated as having a very high, or
very low, development effort had been removed, since
they are not considered as representative. Very similar re-
quirements had also been excluded to get an as broad sam-

1. For more information see www.focalpoint.se.

Fig. 2. A simplified version of the requirement 
state model in the database.

Accepted for 
implementation

Accepted for 
prioritisation

New

Done

Rejected

Fig. 3. Number of implemented requirements (dark 
grey) in each release compared to the sample (light 
grey).

0
15
30
45
60
75
90

105
120
135
150

A B C



37

ple as possible, as well as very new ones as development
costs had not been estimated. 

All market changes, architectural decisions and new
knowledge gained during the 18 months between the ref-
erence release A and release C could be applied. The se-
lected requirements are all in the states Done or Accepted
for implementation; no rejected or postponed require-
ments were considered in the analysis. The requirements
sampling took approximately one hour and was performed
by a developer before the session.

Re-estimation of cost and value. The re-estimation was
performed to find out what requirements the organisation
would have selected for release A if they knew then what
they know now. With the knowledge gained since the ref-
erence release was planned, it is possible that a different
set of requirements would have been selected. However, it
is important to note that one additional requirement in the
release would imply that another one has to be removed,
in order to keep the budget and deadline.

The market value was estimated using pair wise com-
parisons and the cost was estimated in number of hours,
based on expert judgement. The following question was
used in the pairwise comparison of the candidates to the
reference release: “Which of the requirements would,
from a market perspective, have been the best choice for
release A?”. This question was carefully chosen with the
objective of enforcing focus on the retrospective nature of
the estimation. Thus, the assessment concerned the market
value given what is known today, and not whether the de-
cisions made during the reference release were correct or
not, given the knowledge available at that time. 

The 45 requirements were re-estimated by using the
Focal Point tool and pair-wise comparisons to prioritise
them based on the selected question. The prioritisation
was performed by a marketing person, who has good
knowledge of customer demands, guided by a developer,
and was attended by the two researchers. When uncertain-
ties or disagreements of a comparison were discovered,
the issue was briefly discussed to come to an agreement.
The consistency check showed that the prioritisation was
carefully performed and only two comparisons had to be
revised and changed.

The total time of the prioritisation was just over one
hour, in which 70 comparisons were made. The short time
is thanks to the algorithms in the tool, which reduces the
number of comparisons and points out the inconsistencies
among the comparisons [1, 7]. Otherwise, the number of
comparisons would have been n(n-1)/2, which in this case
equals 990.

The development cost of the requirements that were
actually implemented was known, while the development
cost of the requirements that are planned for a coming re-
lease had to be re-estimated. However, it was decided to
use the available cost estimations, since the estimates re-
cently had been reviewed and updated.

A bar chart was created in the Focal Point tool to vis-
ualise and facilitate analysis of the decisions, see Fig. 4.

The grey bars illustrate the requirements implemented in
release A, and the white bars represent requirements im-
plemented or planned for release B or C. The prioritisa-
tions are performed on a ratio scale and normalised to a
relative value in the range between 0 and 1. Thus, it is pos-
sible to subtract the cost from the value, getting a resulting
priority, which is marked by the black arrows in the bar
chart [5]. The bars are sorted on their resulting priority
from top down. Thus the bar chart shows the ideal order in
which requirements should be implemented if only cus-
tomer value and development costs were to be considered.

Some of the requirements were not identified in re-
lease A, but turned out to be important when they later
were identified. Furthermore, requirements interdepend-
encies, release themes and architectural choices compli-
cate the situation and thus this ideal order is not the most
suitable in reality.

In an ideal case, the requirements at the top of the bar
chart would have consisted of requirements from release
A. The requirements at the top of the bar chart are estimat-
ed as having the highest value and the lowest cost and
should therefore be implemented in an as early release as
possible. The requirements at the bottom are estimated as
having the lowest value and the highest cost and should
therefore be implemented in a later release or, in some cas-
es, not at all.

The bar chart illustrates the discrepancies between
the two estimation occasions and points out the require-
ments to discuss.

Root cause analysis. The bar chart is used in the Root
cause analysis, to find out the rationale for the release-
planning decisions. The discussion was attended by three
representatives from the organisation: one marketing per-
son and two developers, as well as the two researchers.

The top 15 requirements were scanned to find the
ones that were estimated differently in the re-estimation,
i.e. the ones that originate from release B or C. These were
discussed to answer the main question “Why wasn’t this
implemented earlier?” and motivations to the decision was
stated by the participants. In a similar manner, the 15 re-
quirements at the bottom of the bar chart were investigat-
ed, to find the ones that originate from release A and B.
These requirements were discussed concerning the ques-
tion “Why did we implement this so early?”. Notes were
taken of the stated answers for later categorisation of the
release-planning decision root causes.

After the meeting, the researchers classified the stat-
ed decision root causes into a total of 19 different catego-
ries, inspired by the notes from the meeting. A sheet with
the requirements that had been discussed during the root
cause analysis was compiled, which the organisation rep-
resentatives used to classify the requirements. The result
from the classification is displayed in Table 1 and Table 2,
where 4 categories have been removed as they were not
used.

Elicitation of improvements. Another purpose of the
case study was to capture improvement proposals by en-



38

couraging the participants to, in connection with each re-
quirement, state some weak areas in need of improvement.
This also appeared to be difficult since each decision was
dependent on the specific context or situation. Therefore,
no list of improvement proposals was compiled at this
stage. Instead, more generic improvement proposal areas
were elicited by investigating Table 1 and Table 2 and the
notes taken from the root cause analysis discussion. This
is described below.

3.3 Results 

The case study showed that it was possible to use the pro-
posed method in practice. The release-planning decisions
that were made in prior releases could be categorised and
analysed and process improvement areas could be identi-
fied. The results indicate that the organisation has gained
a lot of knowledge since the planning of the reference
release, which is a promising sign of evolution and
progress.

Fig. 4. Bar chart from the post-release analysis of the requirements in the database using the Focal Point tool.

Specially ordered by customer.

Implemented in the reference release

Postponed to later releases

Resulting priority (value minus cost) 

Legend:

Why were not some of the requirements
implemented earlier? Their priorities are
apparently very high.

Why were some of the requirements
implemented so early? Their priori-
ties are apparently very low.

Re-estimated relative cost Re-estimated relative value



39

The causes for implementing requirements earlier
than necessary are shown in Table 1. Most of the root
causes originate from wishing to satisfy customer de-
mands, either one specific customer or the whole market.
However, the evaluation showed that the customer value
was not as high as expected. On the other hand, it is diffi-
cult to measure “good-will” in terms of money, and there-
fore these decisions may not be essentially wrong. Other
root causes of implementing requirements earlier than
necessary concern implementation issues, such as incor-
rect effort estimations, which lead us to believe that esti-
mations ought to be more firmly grounded. Another
reason concerns release themes which is a kind of require-
ments interdependency that is necessary to respect. Devel-
oping and releasing small increments of requirements, in
order for customers to give feedback early, is a good way
of finding out more exactly what customers want, while
assigning a low development effort.

As Table 2 shows, the reasons for implementing re-
quirements later than optimal mainly apply to implemen-

tation issues. The category complying with the most
requirements regards partial implementation in a first in-
crement, which means that it was implemented earlier, but
only partially and therefore the requirement remains.

The root cause tables and the material from the dis-
cussion were used in the investigation of possible im-
provement areas. Five areas were found, which could be
linked to the root causes, which are described below. 

Trim the division of large requirements into smaller 
increments.  The manner in which large requirements, af-
fecting several components or having a large implementa-
tion effort, are divided into smaller increments can be
more thoroughly investigated. The division can be done
for several reasons: to get customer feedback at an early
stage, to investigate alternative design solutions or to
make small incremental improvements of the functionali-
ty. Root causes number 3 and 14 deal with requirements
developed in increments and the discussions resulted in
the idea that the organisation would benefit from an im-
proved increment planning. 

Table 1. “Why was this requirement implemented so early?”

Root Causes R
eq

 1
92

R
eq

 3
82

R
eq

 1
5

R
eq

 2
71

R
eq

 2
25

R
eq

 3
49

R
eq

 3
72

R
eq

 4
1

Im
pl

em
.

is
su

es

RC1: Under-estimation of development effort

RC2: Part of release theme

RC3: A quick fix to provide customers opportunity to give feedback

C
us

to
m

er
 

is
su

es

RC4: Requirement ordered by a specific customer

RC5: Requirement specifically important for a key customer

RC6: Over-estimation of customer value

RC7: Impressive on a demo

RC8: Competitors have it, therefore we must also have it

RC9: Competitors do not have it; gives competitive advantage

Table 2. “Why was this requirement not implemented earlier?”

Root Causes R
eq

 1
43

R
eq

 7
33

R
eq

 1
07

0

R
eq

 7
61

R
eq

 1
05

2

R
eq

 9
80

R
eq

 1
14

6

R
eq

 1
04

5

R
eq

 8
13

R
eq

 6
74

R
eq

 8
66

R
eq

 8
67

Im
pl

em
en

ta
tio

n 
is

su
es

RC10: Over-estimation of development effort

RC11: Insufficient understanding of scale-up effects

RC12: No good design solution available

RC13: Sub-optimal decision based on requirements parti-
tioning

RC14: Only partial implementation in a first increment

C
us

.
is

su
es RC15: Requirement ordered by a specific customer



40

Enhance the overall picture of related requirements. 
Some requirements were acknowledged as being related
to other requirements due to involving the same feature.
These would probably have benefited from creating an
overall picture of the release so that all aspects of the spe-
cific feature were accounted for. In some cases a feature
involved several requirements and after implementing
some of them the developers felt content. The related
requirements could instead have been designed concur-
rently in one larger action to avoid sub-optimal solutions.
It would also have helped in identifying the most impor-
tant requirements for that feature. These requirements
relations could be taken into consideration more carefully
as root cause number 13 describes.

Additional elicitation effort for usability require-
ments. It was recognised that the requirements dealing
with the user interface did not fulfil some special customer
needs, as described by root cause number 11. The problem
concerned scale-up effects and could have been discov-
ered through a more thorough requirements elicitation.
Actions to take include building prototypes and asking
customers with special user interface needs.

Improve estimations of market-value of features in 
competing products. It seems that many requirements
were implemented with the objective of outperforming
competitors, as reflected in root cause number 7, 8 and 9.
However, looking too much at what competitors have or
what may look nice on a prototype or demo may bring less
value to the product than expected. The value estimations
of the competitors’ products may need to be improved.

Improve estimations of development effort. Root caus-
es number 1 and 10 concern over- and underestimations of
the development effort. Results from an earlier study indi-
cate that the release plan is very dependent on accurate
time estimates, since the estimates affect how many of the
requirements that are selected [10]. Under-estimation may
result in an exceeded deadline and over-estimation may
exclude valuable requirements. Improving this area may
enhance release-planning and requirements selection qual-
ity.

4 Discussion

The case study participants found the one-day exercise
interesting and instructive. They all agreed that it was val-
uable to reassess previous releases and reflect on the deci-
sions made. It was during the root cause analysis that the
most learning occurred since the discussions between the
participants were very fruitful. A set of improvement
issues to bear in mind during requirements selection was
assessed as valuable for future releases.

Despite the fact that 20 out of 45 requirements were
assessed as belonging to the wrong release, there were few
decisions that were essentially wrong. Keeping in mind
the knowledge available at the time of the reference re-
lease, most release-planning decisions were correct, i.e.

market opportunities and risks have to be taken, incremen-
tal development is applied and only a limited amount of
time can be assigned to requirements elicitation and eval-
uation. However, no matter how successful organisation
or product, there are always room for improvements.

There are a number of validity issues to consider in
the case study. First of all, the data was not extracted from
a representative sample because the releases varied in size.
Therefore there are probably many more requirements
from the largest release that would be interesting to con-
sider. Since the data only included requirements that were
implemented or postponed and no rejected requirements,
there would be more decisions to consider in a more thor-
ough evaluation.

The criterion that was used to capture the true value
of the requirements appeared to be somewhat difficult to
use. Since the development cost was known in most cases,
it was difficult for the participants to concentrate on the
customer value only, without implicitly taking the cost
into account. It was also difficult to, in retrospect, consider
the reference release and the value at that particular time
without regard of the situation today.

The prioritisation itself is also a source of uncertain-
ty; when not performed thoroughly, the bar chart may not
show the appropriate requirements priorities. Neverthe-
less, the consistency check proved that the prioritisation
was performed carefully and few judgment errors were
made [8, 9]. 

Finally, the decision categories that emerged during
the root cause analysis may not reflect the typical kinds of
decisions. A different set of requirements would probably
generate a different set of categories, and therefore these
shall not be used by themselves. It is also possible that the
categories are formulated vaguely or incorrectly, so that
their interpretations differ.

The presented improvement areas are specific to the
particular case study organisation and need to be examined
in further detail to point out the exact measures to take.
However, the participants state that the exercise itself, im-
posing thought and reflection, may be more fruitful than
the particular improvement proposals.

5 Conclusions

The presented method for post-release analysis of
requirements selection quality, called PARSEQ, was
tested in a case study where candidate requirements for a
previous release were evaluated in retrospect. The case
study demonstrated the feasibility of the method in the
context of the specific case and the results from the case
study encourage further studies of the method. This may
support the hypothesis that the method is generally appli-
cable in the improvement of industrial processes for mar-
ket-driven requirements engineering in product software
development.

The following areas are interesting in further investi-
gations of PARSEQ:



41

• Include rejected requirements. The case study only
included requirements that were planned for imple-
mentation in the reference release or postponed to
coming releases. It would be interested to go through
the set of rejected requirements and see if there exist
suspected inappropriate rejections, which may be of
valuable input to the elicitation of improvements.

• Selection quality metrics. Given that the requirements
sample is representative to the distribution of appropri-
ate and inappropriate decisions, it may be possible to
use PARSEQ to provide numerical estimations of the
selection quality in terms of fractions of “good” and
“bad” decisions.

• Connect improvement proposals and root-causes. It is
fairly easy to extract root-causes from the discussion
on misjudged requirements. However, advancing from
root-causes to improvement proposals appeared more
difficult. More investigation into support for finding
improvement proposals is needed.

• Generalisation of root cause categories. If many case
studies applying PARSEQ are carried out in various
contexts, it may be possible to derive a complete and
generally applicable set of root cause categories that
are common reasons for inappropriate decisions. This
knowledge may be very valuable in the research of
requirements engineering methods in the product soft-
ware domain.

Acknowledgements
The authors would like to thank the participating anonymous
organisation for the industrial requirements engineering exper-
tise and confidential data, without which this study would not
have been possible. We would also like to thank Magnus
Höglund at Focal Point for contributing to this work with his
valuable time and knowledge.

References
[1] Carmone, F.J., Kara, A., Zanakis, S.H., “A Monte Carlo

Investigation of Incomplete Pairwise Comparison Matrices
in AHP”, European Journal of Operational Research, Vol
102, pp. 538-553, 1997.

[2] Carlshamre, P., Regnell, B., “Requirements Lifecycle
Management and Release Planning in Market-Driven
Requirements Engineering Processes”, IEEE International.
Workshop on the Requirements Engineering Process
(REP’2000), Greenwich, UK, September 2000.

[3] Carshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt
och Dag, J., “An Industrial Survey of Requirements Inter-
dependencies in Software Release Planning”, IEEE Inter-
national Conference on Requirements Engineering
(RE’01), pp. 84-91, 2001.

[4] Cleland, D.I., Project Management, McGraw-Hill, 1995.

[5] Fenton, N.E., Software Metrics - A Rigorous Approach,
Chapman & Hall, 1994.

[6] Higgins, S. A., de Laat, M., Gieles, P. M. C., Guerts, E. M.,
“Managing Product Requirements for Medical IT Prod-
ucts”, IEEE International Conference on Requirements
Engineering (RE’02), pp. 341-349, 2002.

[7] Karlsson, J., Olsson, S., Ryan, K., “Improved Practical
Support for Large-scale Requirements Prioritising”,
Requirements Engineering,Vol 2, pp. 51-60, 1997.

[8] Karlsson, J., Ryan, K., “A Cost-Value Approach for Priori-
tizing Requirements”, IEEE Software, Sept/Oct 1997, pp.
67-74.

[9] Karlsson, J., Wohlin, C., Regnell, B. “An Evaluation of
Methods for Prioritizing Software Requirements”, Infor-
mation and Software Technology, Vol 39(14-15): 939-947,
1998.

[10] Karlsson, L., Dahlstedt, Å.G., Natt och Dag, J., Regnell,
B., Persson, A., “Challenges in Market-Driven Require-
ments Engineering - an Industrial Interview Study”, Inter-
national Workshop on Requirements Engineering:
Foundations of Software Quality (REFSQ’02), Essen, Ger-
many, September 2002.

[11] Lauesen, S., Vinter, O., “Preventing Requirements
Defects: An Experiment in Process Improvement”,
Requirements Engineering Vol 6:37-50, 2001.

[12] Paulk, M. C., Weber, C. V., Curtis, B., The Capability
Maturity Model: Guidelines for Improving the Software
Process, Addison Wesley, 1995.

[13] Potts, C., “Invented Requirements and Imagined Custom-
ers: Requirements Engineering for Off-the-Shelf Soft-
ware”, Proceedings of the Second IEEE International
Symposium on Requirements Engineering (RE’95), pp.
128-30, 1995.

[14] Regnell, B., Beremark, P., Eklundh, O., “A Market-Driven
Requirements Engineering Process - Results from an
Industrial Process Improvement Programme”, Require-
ments Engineering, 3:121-129, 1998.

[15] Sawyer, P., “Packaged Software: Challenges for RE”,
Proc. 6th Int. Workshop on Requirements Engineering:
Foundations of Software Quality (REFSQ’00), Stockholm,
Sweden, pp 137-142, June 2000.

[16] Ulrich K.T., Eppinger, S.D., Product Design and Develop-
ment, McGraw-Hill, 2000.

[17] Yeh, A., “Requirements Engineering Support Technique
(REQUEST): A Market Driven Requirements Manage-
ment Process”, IEEE Second Symposium of Quality Soft-
ware Development Tools, pp. 211-223, New Orleans USA,
May 1992.



42



43

Modelling Dependencies between Variation Points in Use Case Diagrams

Stan Bühne, Günter Halmans, Klaus Pohl
Institute for Computer Science and Business Information Systems (ICB)

Software Systems Engineering
University of Duisburg-Essen

45117 Essen; Germany
E-mail: {buehne, halmans, pohl}@sse.uni-essen.de

Abstract

Software product family variability facilitates the
constructive and pro-active reuse of assets during the
development of software applications. The variability is
typically represented by variation points, the variants
and their interdependencies. Those variation points and 
their variants have to be considered when defining the
requirements for the applications of the software
product family. To facilitate the communication of the
variability to the customer, an extension to UML-use
case diagrams has been proposed in [9].
In this paper we identify common dependency types used 
within the feature modelling community to express
interdependencies between variation points and
variants. We then propose a differentiation of those
interdependencies to be used to reduce complexity and
to facilitate selective retrieval of interdependencies
between variation points and the variants. Finally, we
extend the notations proposed in [9] for representing
interdependencies between variation points and variants 
in use case diagrams and use a simple example to
illustrate those extensions.

1 Introduction

Software product families facilitate pro-active and
constructive reuse of software product assets and thereby 
reduce the development costs of customer applications.
The development of product families is characterized by
two processes (cf. Figure 1). During domain engineering
the common assets are realized and the variability of the 
product family is defined. During application
engineering the product family variability is exploited to 
define and implement different products by reusing the
shared assets defined during domain engineering [21].

Obviously, making the costumer aware of the product 
family capabilities and variability is a key factor for the
successful reuse of the product family assets. The
communication of the product family variability to the
customer is thus essential. Communicating the capability 
and the variability to the customer is the main difference 

between requirements engineering for single software
products and requirements engineering during domain
engineering.

Domain Engineering

Requirements,
Architecture, Test-

Cases…

Application Engineering

Feed-
back

Domain Engineering

Requirements,
Architecture, Test-

Cases…

Application Engineering

Feed-
back

Figure 1: Domain and Application Engineering in Product 
Family Development

Most research contributions on product family
variability focus on the architectural level [1], [2], [20].
For example, they deal with aspects like the realization
of variability on a technical level and technical binding
of the variation points. From the customer perspective
those aspects of variability are not so important. In
contrast, the customer is rather interested in the essential 
aspects of the variability, i.e. the customer wants to
know how the variability contributes to his needs. Thus
the customer is e.g. interested in the functional and
quality aspects of variability, i.e. which different
payment methods are available for an internet-based
booking system. As argued in [9] one should thus
distinguish between essential and technical variability.

Essential variability comprises all types of variability
from the customer viewpoint. This includes of course all 
functional aspects. For example, the provider of a
navigation system provides two variants for determining
the address of the next destination, via a menu or via
voice input. The customer would be interested in having
the choice between the different “input” methods,
whereas the engineer is more interested in
implementation aspects, e.g. how the voice input is
technically integrated in the navigation systems. 



44

Obviously, when defining the requirements for a
customer specific application during application
engineering, at least the essential variability aspects have 
to be communicated to the customer. In other words, the 
variation points and variants have to be considered when 
defining the requirements for the applications of the
software product family. To facilitate the communication 
of the essential variability aspects to the customer we
proposed an extension to UML-use case diagrams (cf.
[9]).

Adding to the complexity, besides the variants and
the variation points also the interdependencies between
variants and variation points have to be considered. For
example, a variant can exclude another one, e.g. when
you are buying a roof-less car, you cannot choose a sun-
roof. Or, a variant might require the choice of another
variant, e.g. if you choose an engine with high power,
you have to take bigger wheels. Obviously, only if the
customer is aware of those interdependencies he is able
to recognize the consequences of his selection. Since
there are generally  many of such interdependencies
within a product family, dealing with the complexity of
those interrelations is a big challenge. 

As the major step forward regarding our work in [9]
in this paper we focus on how those interdependencies
between variants and variation points can be
communicated to the customers. We propose a
classification as a mean to deal with the complexity of
the interdependencies and suggest a representation using 
common requirements engineering techniques for
supporting the communication.

In section 2 we briefly describe the extensions to use
case diagrams required for representing variation points
and variants.

In section 3 we give an overview on the state of the
art of considering interdependencies of product family
variability at the requirement level.

To be able to deal with the complexity of those
interdependencies we suggest to consider the origin of
the dependencies and to clearly indicate derived
interdependencies in section 4.

In section 5 we outline how those interdependencies
can be visualized in UML Use Case Diagrams and
sketch potential tool support.

In section 6 we summarize the main contribution of
this paper and provide an outlook on future work.

2 Representing Product Family
Variability in Use Case Diagrams

To facilitate the communication of variation points
and their variants to the user, both the variation points
and the variations must be explicitly represented. In [9]
we suggested to apply Use Cases for communicating the 

variability of the product family to the customer and
showed why standard UML notations are not suitable for 
this purpose. Therefore, we proposed extensions to Use
Case Diagrams, which enables the explicit
representation of variation points and their variants (see
[9] for details). In the following we briefly introduce
these extensions.

<<variant>>
Payment by
credit card

Paying
train
ticket

<<variant>>
Payment by

check

<<variant>>
Payment by

cash

Pay-
ment

method

<<include>>

1..1 0..2

<<variant>>
Payment by
credit card

Paying
train
ticket

<<variant>>
Payment by

check

<<variant>>
Payment by

cash

Pay-
ment

method

<<include>>

1..1 0..21..1 0..2

Figure 2: Explicit Representation of Variation Points in Use 
Case Diagrams

• Variation point: For making a variation point visible
in use case diagrams we represent a variation point as
a triangle. The variation point is itself included by
another use case (cf. Figure 2)

• Variant: To make variant use cases explicit we use the 
stereotype <<variant>> (cf. Figure 2, e.g. the variant
payment by credit card)

• Cardinality of the relationship between variation
point and variant: Regarding the relationship between 
variants and variation points one has to consider, that
a variant can be mandatory for a variation point A and 
optional for a variation point B. To express these
kinds of relationships we represent the relationship
between variants and variation points by a dashed line
and a circle on the variation point side. Moreover, we
define cardinality for the relationship to express if a
variant is mandatory or optional regarding the specific 
variation point. More general the cardinality
expresses, how much of the related variants must and
how much of the related variants could be selected. In 
Figure 2 for example the variant payment by credit
card is mandatory, which is represented by the
cardinality 1..1.

• Mandatory and optional variation points: To make
clear if one of the related variants according to a
specific variation point has to be chosen we
distinguish between mandatory and optional variation
points. A variation point is mandatory, if at least one
of the related variants has to be selected. Mandatory
variation points are represented by a black filled



45

triangle (like the one in Figure 2) whereas optional
variation points are represented by a light-grey
triangle.

With the defined extensions variation points and variants 
are explicitly visible in the use case diagram.
Furthermore the cardinality of the relationship between
variant and variation point is documented. It is now
explicit, whether a variation point is mandatory or not
and one is able to recognize how much variants from a
set of variants have to be selected. 

The new notations do not involve the possibility to
represent dependencies, e.g. between variants related to
another variation point. Furthermore, so far it is not
possible to express dependencies between variation

points and to represent the type of dependencies. These
issues will be our focus in the next sections.

3 Dependencies in Feature Modelling

The need to consider the interdependencies between
different variation points at the requirements level has
been identified already by the feature modelling
community. In this section, we provide an overview on
the state of the art of representing dependencies between 
features. In Table 1 we first give an overview of
dependency-types used in feature modelling approaches.

Dependency Type Description Used in 

composed of The composed of dependency is used when a parent feature is consisting of a 
set of child features (e.g. mobile is composed of voice-transfer, data-transfer,
shot messages, etc.).

FORM [15]
FOPLE [16]

implemented by The implemented by dependency is used to describe that one feature is needed 
to implement another feature (e.g. UMTS needs specific transfer protocols).

FORM [15]
FOPLE [16]

generalization The generalization / specialization dependency is used to generalize or 
specialize features (e.g. data transfer can be specialized as wap, UMTS, fax, 
etc.).

FORM [15]
FOPLE [16]

refinement The refinement link is used to structure features in the same way as the 
composed of dependency 

FODA [14]
FeatuRESB
Riebisch

requires The requires dependency is used to describe if one feature needs another (e.g.
satellite-navigation requires GSP-signal)

FODA
FeatuRESB [12]
Riebisch [19]

(mutual) exclusive The exclusive (or exclude) dependency is used when one feature conflicts with 
another (e.g. the textual cellular display excludes mobile photography)

FODA [14]
FeatuRSEB [12]
Riebisch [19]

hints The hint dependency is a strategic dependency, and is used to express that the 
choice of another feature increases the system usage (e.g. mp3 player for 
mobile)

Riebisch [19]

mathematical The mathematical dependency describes the relative impact from one feature to 
another.

Riebisch [19]

Table 1: Dependency-Types used in Feature Modelling

FODA [14] was one of the first feature-oriented
approaches. For the representation of dependencies
FODA uses refinement-links to partition commonalities
and variable aspects among features and semantically
describes constraints for requires and mutual exclusive
dependencies. FOPLE [16] employs composition,
generalization, and implementation links to structure
variable aspects among features. The FORM – Method
[15] supports the same kind of links as the FOPLE
approach. The FeatuRSEB approach [8] is a
combination of FODA and Jacobsons RSEB [12], and
therefore uses the same dependencies as in FODA to
describe variability. Riebisch et al. [19] use refine links

to express variability aspects and further differentiate
between hard constraints, as requires and mutual
exclusive, and soft constraints as hints and mathematical 
relations to describe dependencies between features.

The various dependency types proposed in the feature 
modelling literature can be characterized by two main
categories:
• Realization-dependencies: This category subsumes all

dependencies, which deal with realization aspects of a 
feature. Such dependency types are used to define the
restriction in the choice of the variants associated to
one variation point. E.g. the representation of a



46

navigation-system can be by voice, graphics, and or
text whereas the representation is either colored or
black and white. These dependencies show in which
different ways an aspect can be realized.

• Constraint-dependencies: This category subsumes all
other feature interdependencies. For example, one
feature can exclude another, or one feature requires
another feature like the choice of colored-graphical
representation within a navigation-system requires a
colour display and geographical information to fulfil
this demand.

4 Considering the “Why” of Product 
Family Variability Interdependencies

A prerequisite to find a suitable representation for
product family variability dependencies is to know why
these dependencies exist.

In this section we elaborate on different reasons
(sources), which cause a dependency concerning the
product family variability. Based on dependency types
used in feature modelling (see last section) we first
define a set of dependency types to be used to represent
interdependencies between variation points and variants
(Section 4.1). In Section 4.2 we discuss the various types 
of possible interdependencies between variation points
and/or variations. In Section 4.3 we elaborate on the
reasons why a certain type of dependency is introduced.
We thereby distinguish between so-called core-
dependencies and derived-dependencies. In Section 0 we 
differentiate between several types of derived-
dependencies.

4.1 Dependency types
Based on the dependency types used in feature

modelling and our experience with modelling
dependencies concerning product family variability, we
suggest differentiating at least between the following
four types of interdependencies:
• requires-dependency: describes that the binding of one 

variant implies the need of another variant (required
variant). For example if one wants to lock up his car
via remote control this variant requires a centralized
door locking.

• exclusive-dependency: describes that the binding of
one variant excludes the selection of another variant
(excluded variant) – means that only one of those
variants can be selected. As mentioned earlier the
choice to get a cabriole for example excludes the
variant “sunroof”.

• hints-dependency: In analogy to the approach of
Riebisch et al. [19] this dependency type comprehends 
dependencies where the binding of one variant has
some positive influence on another variant. For

example a T-DSL-connection might have a positive
influence on choosing the online shopping variant (in
contrast to a modem-connection).

• hinders-dependency: describes that the binding of one
variant has some negative influence on another
variant. If one chooses the mobile phone for using the
internet this might have a negative influence on online 
shopping because of the little mobile phone displays.

Note, that the requires dependencies and the hint
dependencies are uni-directional, whereas the exclusive-
dependency and the hinders dependencies are bi-
directional. For example, if a variant A requires a variant 
B it does not imply that the variant B requires the variant 
A. In contrast, an exclusive-dependency between variant 
A and variant B represents that if variant A is chosen
than variant B can not be chosen and vice versa.
Dependency type Direction
Requires-dependency Uni-directional
Exclusive-dependency Bi-directional
Hint-dependency Uni-directional
Hinders-dependency Bi-directional

Table 2: The Direction of Dependency Types

4.2 Dependencies between Variants and/or 
Variation Points

The following three principle interrelations between
variants and/or variation point exists:
• Dependency between variant and variation point. As

described in [2] and [9] a variant is obviously related
to one or more variation points. For example the
variant paying a ticket by credit card is a variant of
the variation point payment methods for train tickets
(in addition to the variants payment by check and
payment by cash). A variant can be related to more
than one variation points (and has thus more than one
dependencies to a variation point). The variant paying
a ticket by credit card for example could also be a
variant of the variation point payment method for
merchandising articles (of the train company).

• Dependency between variant and variant: Consider
the variant paying by credit card.  If this variant will
be selected for paying via internet one has also to
select the specific variant for encrypting the credit
card information. In this category one has to consider
two different cases: (1) the depending variants are
related to one variation point and (2) the depending
variants are related to different variation points (see
the example mentioned above).

• Dependency between variation point and variation
point: For example, if a mobile phone product family
provides the choice to use the mobile phone in
different countries (variation point countries) it also



47

has to provide the choice between different protocols
(variation point protocol).
The dependencies described in this Section are

orthogonal to the dependency types in Section 4.1. For
example, the dependencies between a variant and a
variation point can be a require dependency or an
exclusive dependency and a require dependency can
occur in all three categories, i.e. between variation
points, between variants and between a variant and a
variation point.

4.3 Core Dependencies
Each dependency is of course introduced for a

particular reason. For being able to understand the
reason why a dependency was introduced in the first
place, we suggest to add a textual attribute to each
dependency for describing the reasons. 

We thereby distinguish between two types of
dependencies with respect to the product family
variability:
• core-dependencies, which subsume all dependencies

introduced due to the context of the system, i.e. the
system context enforces some constraints on the
system represented as core-dependencies.

• Derived-dependencies, which subsume all
dependencies derived from the core-dependencies.
One reason why a derived-dependency exists lies in
the refinement of features and functions. But there are
others (see section 4.3).
For the core-dependencies we further suggest to

classify the influence the context of the systems has on
the dependencies existing between features (variation
points, variants) according to three main views (see
Figure 3; cf. [11], [18] for a detail description of those
views/worlds):

- Usage view: from the usage point of view the
system under consideration has to support needs
respectively solve problems of the users (whereby 
a user can be the end-user, the provider or
administrator of the system). Thus the usage view
deals with all functional demands to the system –
in other words it deals with the whole
functionality the system should provide to any
user.

- Domain view: from the domain point of view the 
system under consideration needs to map the
corresponding real world domain to a system.
That means all necessary information of a
specific scope (domain) has to be represented in
a system. This data is driven by relevant subject
properties (e.g. name, address, etc of a vendee),
domain specific standards (e.g. financial
standing) or driven by laws (e.g. full name and
address of vendor). 

Domain ViewUsageView

Technical View

Functional aspects
- Functionality
- Proceeding
- Behavior
- ...

Data concerning
- Subject properties
- Domaininformation
- Laws
- ...

System aspects concerning
- physical systems
- soft systems
- ...

Figure 3: Contextual Views of a System

- System/technical view: from the technical point
of view the system under consideration depends
on physical systems, means given and requested
hardware (e.g. architecture, communication
interfaces) and soft systems means given and
requested software (e.g. computer- and user-
interfaces). The term physical systems enfold all
environmental systems the product has to deal
with (e.g. signal of GPS-Satellite), as well as
physical restrictions (e.g. size of display, number 
of buttons, etc.).

Those views are obviously interrelated, e.g. facts
about the domain are represented by systems to support
the end-user with needed functionality. 

 Table 3: Dependency Categories of Core Dependencies

Source Category Example

Usage
View

Dependency
regarding
the
functionality
of a system

the payment method via 
credit card and internet 
depends on the security 
functionality of the web 
application

Domain
View

Dependency
regarding
the data of
the system

the choice to represent a
signature may be depend
on the representation of
additional authentication
information

Technical
View

Dependency
regarding
the IT of a
system

a chosen graphical user
interface (e.g. mobile
phone) affects the needed
implementation language
(e.g. WAP).



48

Table 3 summarizes the three different contextual
sources for a dependency: the domain view focuses on
the data (information), the usage view focuses on
functional aspects of the system, and the technical view
focuses on computer systems, networks,
telecommunication systems, etc. the system run on or
interacts with. 

4.4 Derived Dependencies
Many dependencies concerning the product family

variability are not introduced due to contextual reasons,
i.e. there are many dependencies, which are not core-
dependencies, but derived from the core dependencies or 
from so-called high-level features.

4.4.1 Dependencies Derived from High-Level-
Features

A main reason for introducing variation points and/or 
variants can be the existence of a so-called high-level
features. Examples for such high-level features are
“sports-edition” in the car industry or “internet-shop” in
a procurement system. For example, when buying a car
you might be able to select the “sports-edition”. By
making this decision, you select a lot of “details”, i.e.
you bind a whole set of variation points with a
predefined set of variants defined for this high-level
feature. For example, you get a strong engine, an
aluminium interior (instruments, knops, etc.), special
tires etc. 

Thus, a high level feature often predefines the
“binding” of a whole set of variation points to specific
variants. Moreover, a certain variant or even a whole
variation point might only exist due to the high-level
feature.

We thus suggest to specify explicitly that a variation
point and/or a variant were introduced due to a high
level feature. This can be achieved by adding a
dependency link stating the high-level feature was
responsible for the introduction of the variant or
variation point and by adding an attribute to each
dependency link between variants/variation points
introduced due to high-level feature.

4.4.2 Transitive -Dependencies
Transitive dependencies are derived from other

dependencies. A functionality required from the usage
perspective (usage view) might require specific
information/data, which in turn require some it-solution.
For example, to support the evaluation of the actual
stock market situation, one requires the actual stock
exchange rates which in turn require a IT-solution
providing an update of the stock exchange data every 10 
seconds. Figure 4 illustrates this situation. There are two 

core-dependencies (between the functionality and the
data, and between the data and the IT) and one indirect
dependency, specifically between the functionality and
the IT. The latter one we call (derived) transitive-
dependency.

To make the reasons traceable, we argue that the
derivation of transitive-dependencies should be visible
to the product family engineer and the customer. We
thus indicate the fact that a dependency was derived due 
to other core-dependencies by a “transitive-dependency”
attribute, which relates the derived dependency to the
core-dependencies it was derived from.

Knowing where a dependency was derived from (e.g. 
to retrieve the sources for the derivation) enables an
engineer to understand why a specific dependency
exists. This information facilitates the selection of the
variants during application engineering, and – even more 
important – is very helpful for dealing with evolution of
the product family itself (e.g. when adapting a specific
variant for a customer or even changing a variant for the 
whole product family). 

Functionality Data

Information Technology

direct dependency

direct dependency

derived dependency

X

Y

Z

Functionality Data

Information Technology

direct dependency

direct dependency

derived dependency

X

Y

Z

Figure 4: Derived Transitive Dependencies

4.5 Classification of Dependencies: Summary
Differentiating between derived and core

dependencies empowers the user to focus on a special
type of dependencies at a time and thus decreases the
complexity of dependencies within product family
variability significantly (see section 5 for examples).
This differentiation is thus essential for facilitating the
communication of product family dependencies to
customers. In Figure 5 the necessary attributes for the
dependency-links are depicted.



49

Variant
Variation Point

Variant
Variation Point

type

view

transitive

1:1

1:1

0:N

Highlevel feature
0:N

Figure 5: Dependency Attributes

5 Representation of Dependencies in Use 
Case Diagrams
In Section 4 we described the different sources of

dependencies within product family variability. In this
section we suggest a representation of the different
dependencies to support the communication to
customers. Motivated by the positive experiences with
the representation of variability aspects by use case
diagrams (see [9]) we suggest completing this
representation according to dependency aspects. The
intention of use case diagrams is to model the interaction 
of users and/or other systems with the system under
consideration. Therefore, in the following section we
concentrate on the functional aspects according to the
product family dependencies.

5.1 Representing the Four Types of 
Dependencies

To express dependencies in use case diagrams, we
need to extend the notation among the mentioned
dependency-types. The UML [17] allows extending the
language by refining consisting elements by
stereotyping. To express the dependencies we created a
<<requires>>, <<exclusive>>, <<hints>>, and
<<hinders>> stereotype. To express the derived
dependencies we also specialized the requires and
exclusive dependency type to <<derived_requires>> and 
<<derived_exclusive>> (see Figure 6).

<<metaclass>>
Dependency

<<stereotype>>
Constraint

<<stereotype>>
requires

<<stereotype>>
exclusive

<<stereotype>>

<<stereotype>>
hinders

<<stereotype>>
hints

<<stereotype>>
derived_requires

<<stereotype>>
derived_exclusive

Figure 6: Dependency-Stereotypes

The <<requires>> type is expressed by a dotted line
with an arc to the element that is required by the other.
The <<exclusive>> type is expressed by a dotted line
with arcs on each end that illustrate the exclusive
relation between these elements. The <<hints>> type is
expressed by a pointed line with an arc to the useful
element. The <<hinders>> type is illustrated by a
pointed line with an arc on each end, that illustrates the
hindering relation between those elements. (Figure 7)

<<hints>> <<hinders>>

<<exclusive>><<requires>>

Requires-Dependency Exclusive-Dependency

Hinders-DependencyHints-Dependency

<<exclusive>><<requires>>

Derived-Requires-Dependency Derived-Exclusive-Dependency

<<requires>>

<<derived_requires>>

<<requires>>

<<derived_exclusive>>

Figure 7: Dependency-Types

5.2 Representing the Dependencies According 
Variant and/or Variation Points

Dependencies between Variants of the same
Variation Point

Dependencies among variants of the same variation
point, like the selection of one variant requires another,
have to be expressed by dependency-links. For example, 



50

the selection of the variant viewpoints <<hints>> the
selection of city maps (Figure 8).

<<variant>>
viewpoints

<<variant>>
city maps

<<variant>>
contacts

destination
types

1..3

manage
destinations

<<include>>

<<hints>>

<<requires>>

Figure 8: Dependencies between Variants of one Variation 
Point

Beside the represented requires- and hints-
dependency, also exclusive- and hinders-dependencies
have to be represented.

Dependencies between Variants of different
Variation Points

As already mentioned before, dependencies between
variants of different variation points also have to be
handled. E.g. the selection of a specific variant “route
selection by viewpoint” causes a requires-dependency to 
the variant “manage viewpoints“ of another variation
point (Figure 9).

Route
selection

<<variant>>
by address

<<variant>>
by contact

<<variant>>
by viewpoint

0..2
1..1

<<variant>>
viewpoints

<<variant>>
city maps <<variant>>

contacts

destination
types

1..3

<<requires>>

<<requires>>

<<hints>>

<<requires>>

manage
destinations

<<include>>

navigate to 
location

<<include>>

Figure 9: Dependencies between Variants of different 
Variation Points

Dependencies between Variation Point and
Variation Point

The selection of one variation point can cause
dependencies to other variation points. For example the
selection of a movie-player requires the selection of an
audio-player. In Figure 10 we illustrate an example
where the selection of a navigation system “navigate to
location” requires the use case variation point “manage
destinations”.

Route
selection

<<variant>>
by address

<<variant>>
by contact

<<variant>>
by viewpoint

0..2
1..1

<<variant>>
viewpoints

<<variant>>
city maps <<variant>>

contacts

destination
types

1..3

<<requires>>

<<requires>>

<<hints>>

<<requires>>

manage
destinations

<<include>>

navigate to 
location

<<include>>

<<requires>>

Figure 10: Dependencies between Variation Points

Dependencies between Variants and Variation
Points

The selection of a variant can cause dependencies to
other variation points (without a restriction to the
selected variants). This means that when selecting a
variant another variation point is required or even
excluded, without consideration of the variants. Figure
11 illustrates this case: the variant “manage contacts”
requires the variation point “admin categories”, without
specifying any variants of the required variation point.

<<variant>>
viewpoints

<<variant>>
city maps

<<variant>>
contacts

destination
types

1..3

Adress
catrgories

<<variant>>
priv.contacts <<variant>>

staff

<<variant>>
customer

1..3

<<requires>>

<<exclusive>>

<<hints>>

<<requires>>

manage
destinations<<include>>

admin
adressbook

<<include>>

Figure 11: Dependencies between Variants and Variation 
Points

5.3 Representing the Core of Dependencies

In 4.3 we introduced origins of dependencies and
differentiated among three categories: usage, domain,
and technology. The example (Figure 12) shows the
origin of the requires-dependency between “viewpoints”
and “city maps”. The depicted requires-dependency has 
its origin in the domain, because to manage the
viewpoints of a city, one needs city maps to locate those 
viewpoints.



51

<<variant>>
viewpoints

<<variant>>
city maps

<<variant>>
contacts

destination
types

1..3

manage
destinations

<<include>>

<<hints>>

<<requires>> Domain

Figure 12: Dependencies with Core Description

The origins of the dependency-links will be
illustrated as additional attribute to the link-type. By an
adequate tool-support one can generate views that
express which use case dependencies have their origin in 
the domain (i.e. in data), in information technology, or in 
the usability of a system. As a result of that, one has the
opportunity to discover which use cases change when for 
example the domain, or information technology changes. 

5.4 Representing derived dependencies

5.4.1 Derived Dependencies form High Level 
Selections

When selecting a high level feature the binding of a
whole set of variants or variation points can be
predefined and/or the user has to make a selection for
several variation points. For example, if the user selects
for a shop system the variant online system, he can
choose between payment and transaction methods, and
delivery different delivery services. But if he selects the
local store variant, he is not able to choose different
transaction methods. The selection he can make
therefore depends significantly on the choice he made on 
the higher level. The example in Figure 13 shows that as 
a result of a high level selection (“online shop”) new
(derived) dependencies appear that have to be
considered.

In the example, both requires-dependencies are the
reason for the “new” derived dependency.

<<variant>>
Global Shop

<<variant>>
Online Shop <<variant>>

Local Store

Shop type

1..3

<<hints>>

Buy item
<<include>>

<<variant>>
delivery
Service

<<variant>>
secure

Transaction

<<requires>>
<<requires>>

<<derived
_requires>>

...

...

Figure 13: Derived Dependencies Evoked by High Level 
Selections

5.4.2 Transitive Dependencies
We discussed the fact that a dependency is transitive

(derived from other dependencies) in 4.4.2. As depicted
in Figure 14, UC_1 requires UC_2 and UC_2 requires
UC_3. Therefore it is obvious that UC_1 indirect
requires UC_3. The representation of derived
dependencies in use case diagrams generates a huge
complexity of those diagrams. Figure Figure 14
illustrates the complexity on a simple but abstract
example..

UC1

UC2

UC3

UC4

<<exclusive>>

<<requires>>

UC5

UC6

<<exclusive>>

<<requires>>

<<requires>>

<<exclusive>>

<<derived
_exclusive>><<derived

_exclusive>>

<<derived
_requires>>

<<derived
_exclusive>>

Figure 14: Derived Transitive Dependencies

Figure 15 illustrates the overall complexity of
dependencies among use case variants and variation
points. Even if only three variation points are illustrated
as in this example the result is quite complex. When we
think of product families one has to deal with hundreds
of variation points. To handle this complexity assistance 
by tools is necessary.



52

Route
selection

<<variant>>
by address

<<variant>>
by contact

<<variant>>
by viewpoint

0..21..1

<<variant>>
viewpoints

<<variant>>
city maps <<variant>>

contacts

destination
types

1..3

manage
destinations <<include>>

navigate to
location

<<include>>

<<requires>>

Navigation System

<<requires>>

Adress
catrgories

admin
adressbook

<<requires>>

<<include>>

<<variant>>
priv. contacts

<<variant>>
...

<<variant>>
...

1..3

<<hinders>>

<<variant>>
customer

<<hints>>

<<requires>>
<<exclusive>>

<<requires>>

<<hints>>

<<derived
_requires>>

<<hints>>

<<hinders>>

<<exclusive>>

<<requires>>

<<derived
_requires>>

Dependency Types

<<derived
_exclusive>>

domain

<<requires>>

<<derived_exclusive>>

domain

technology

domain

usage

domain

domain

Figure 15: Overall Dependency View

5.5 Tool Support
Considering the representations of the different

dependencies (sources and types) one has to recognize
the enormous complexity of product family variability
dependencies. Thus for the communication of these
dependencies to customers it is essential to reduce this
complexity. Thus the communication to customers leads
to the following two problems:
• On the one hand, one has to avoid that the use case

diagrams are overloaded when representing the
interdependencies.

• On the other hand, the customer has to recognize the
important ones. Only if he is aware of the important
dependencies he will be able to recognize the
consequences of his selections.
The problems can be solved by tool support and by

using the different categories of dependencies outlined
in Section 4. The tool should fulfil the following
requirements:
• In the standard mode the tool only should visualize the 

four dependency types described in Section 4.1. The
tool should provide a separate view for each
dependency type, so that it is possible for example to
see all exclude-dependencies within one view. In this
standard mode no sources of core dependencies (usage 
view, domain view, IT view) or derived dependencies
are shown. (5.2)

• Then the tool should be able to visualize the different
sources of dependencies so that the customer is able to 
recognize if a dependency is based on functional or
data aspects. (5.3)

• Furthermore the tool must be able to visualize the
derived dependencies, from high-level selections and
transitive dependencies (5.4). This implies to 
o show the dependencies (core and derived) in a

graphic form. It must be possible to fade in and 
fade out the derived dependencies.

o highlight the origin of derived dependencies
o represent the derived dependencies in a tabular

form
With these capabilities the tool would be able to

support the communication of product family variability
dependencies. One would be able to generate the
specific view according to the current topic of the
product definition. The tool thus is able to reduce
complexity and to make the customer aware about the
essential dependencies.

6 Summary and Outlook
One of the main concepts of product families is to

facilitate the constructive reuse of product family core
assets during the development of customer specific
products. The main goal of reusing core assets is to
reduce costs and time in the process of  developing



53

products. In order to reach this goal it is essential to
communicate the product family variability and
capabilities with the customer.

In this paper we argue, that explicit representation of
product family variability and the variation point
dependencies with use case models help the
requirements engineer to communicate variability
aspects to the customer. For finding suitable
representations of dependencies we elaborated on
different types of dependencies, in analogy to the
dependencies within feature modelling. We
characterized the dependencies between variants and/or
variation points. Then we described why dependencies
occur: The origin of dependencies can be caused by
functional, data, or IT aspects. Moreover, dependencies
can be derived from other dependencies and thus they
are very difficult to recognize and to communicate.

Regarding the special interest of customers in
functional aspects of variability and motivated by the
successful representation of functional variability in use
case diagrams we suggested a representation of
dependencies in use case diagrams. The explicit
dependency representation is a prerequisite (in addition
to variant and variation point representation) of a
successful communication of product family capabilities
to customers. In addition it supports change management 
of variants because now one is able to identify all
depending variants (or variation points) of the changed
variant.

But the suggested representation of dependencies in
use case diagrams also illustrates the enormous
complexity of this issue. Therefore we suggest tool-
support for reducing complexity without loosing the
essential dependency information for the communication 
to the customers.

However, according to the definition and
implementation of customer specific products many
open issues have to be handled. Thus our future work
deals with the following questions:

o How to represent non-functional aspects of
variability, including dependencies?

o How to support the derivation of products using 
use cases and scenarios?

o How influences the cardinality of relationships
between variants and variation points the
dependencies between variation points?

7  References

[1] Felix Bachmann, Len Bass: Managing Variability in
Software Architecture; ACM Press, NY, USA, 2001

[2] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha
Kuusela, Henk Obbink, Klaus Pohl: Variability
Issues in Software Product Lines; Fourth

International Workshop on Product Family
Engineering (PFE-4), Bilbao, Spain, 2001

[3] K. Czarnecki, U. Eisenecker; Generative
Programming: Methods, Techniques, and
Applications; Addison-Wesley 1999

[4] J. Carroll: The Scenario Perspective on System
Development, Scenario-Based Design: Envisioning
Work and Technology in System Development; John 
Wiley & Sons, 1995

[5] Paul Clements, Linda Northrop: Software Product
Lines, Practices and Patterns; SEI Series in Software
Engineering; Addison Wesley, 2001

[6] Alistair Cockburn: Writing Effective Use Cases;
Addison Wesley, 2001

[7] Coriat, M., Jourdan, J., Boisbourdin, F. : The SPLIT 
method. Proceedings of the First International
Software Product-Line Conference (SPLC-1),
August 2000

[8] M. Griss, J. Favaro, M. d’Alessandro: Integrating
Feature Modeling with the RSEB; 5th ICSR
Conference Proceedings, Vancouver, Canada 1998

[9] Günter Halmans, Klaus Pohl: “Communicating the
Variability of a Software Product Family to
Customers”, Software and Systems Modeling; Vol. 2,
15-36; Springer; Hamburg; March 2003;

[10] Günter Halmans, Klaus Pohl: Modellierung der
Variabilität einer Produktfamilie; Modellierung
2002: Modellierung in der Praxis - Modellierung für 
die Praxis, 2002

[11] Matthias Jarke, Klaus Pohl; Establishing Visions in
Context: Towards a Model of Requirements
Processes (1993) EMISA Forum

[12] I. Jacobson, M. Griss, P. Jonsson : Software Reuse
Architecture, Process and Organization for Business
Success; Addison-Wesley:Longman, May 1997

[13] Ivar Jacobson: Object-Oriented Software
Engineering: A Use Case Driven Approach; Addison
Wesley, 1992

[14] K. Kang et al; Feature-Oriented Domain Analysis
(FODA) Feasibility Study; Technical Report No.
CMU/SEI-90-TR-2, November 1990, Software
Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA

[15] K. Kang et al; FORM: A Feature-Oriented Reuse
Method with Domain-Specific Reference
Architectures; Annals of Software Engineering 5,
1998



54

[16] Kyo C. Kang, Kwanwoo Lee, JaeJoon Lee, and
SaJoong Kim: Feature-Oriented Product Line
Software Engineering: Principles and Guidelines; to
in Domain Oriented Systems Development-Practices
and Perspectives, Gordon Breach Science Publishers, 
UK, 2002

[17] Object Management Group (OMG); OMG Unified
Modelling Language Specification, Version 1.4;
September 2001 OMG, http://www.omg.org/uml

[18] Klaus Pohl; Process-Centered Requirements
Engineering; Research Studies Press 1996

[19] Detlef Streiferdt, Matthias Riebisch, Ilka
Philippow; Formal Details of Relations in Feature
Models; In: Proceedings 10th IEEE Symposium and
Workshops on Engineering of Computer-Based
Systems, Huntsville Alabama, USA, April 7-11,
2003

[20] Mikael Svahnberg, Jilles van Gurp, Jan Bosch: On
the Notion of Variability in Software Product Lines;
Proceedings of The Working IEEE/IFIP Conference
on Software Architecture, 2001

[21] Frank van der Linden: Software Product Families in 
Europe: The Esaps & Café Projects; IEEE Software,
19(4); 41-49, July/August 2002



55

Requirements Interdependencies 
- Moulding the State of Research into a Research Agenda

Åsa G. Dahlstedt 
Department of Computer Science

University of Skövde, 
Box 408, SE-541 28 Skövde, SWEDEN

asa.dahlstedt@ida.his.se

Anne Persson
Department of Computer Science

University of Skövde, 
Box 408, SE-541 28 Skövde, SWEDEN

anne.persson@ida.his.se

Abstract.
Requirements relate to and affect each other, i.e.

they are interdependent. This paper provides an
overview of the current state of research on
requirements interdependencies and formulates a
research agenda for the area. The research agenda,
which is based on a new classification drawn from
the literature and intermediary results from an
ongoing interview study, addresses a number of
unresolved issues concerning the identification,
documentation and use of requirements
interdependencies in the software development
process.

1. Introduction

Most requirements cannot be treated
independently, since they are related to and affect
each other in complex manners [1, 2]. Actions
performed based on one requirement may affect other 
requirements in ways not intended or not even
anticipated. Dependencies between requirements may
also affect various decisions and activities during
development, e.g. requirements change management
[3, 4], release planning [2, 5], requirements
management [6], requirements reuse [7] and
requirements implementation [8]. This implies that
there is a need to take interdependencies into
consideration in order to make sound decisions
during the development process (for examples, see
Section 3.1). Despite this, little is known about the
nature of requirements interdependencies, and further 

research is needed in order to understand the
phenomenon better [5, 9,10].

The overall aim of our research is to identify
which types of requirements interdependencies that
are critical to take into consideration in specific
development situations, such as e.g. release planning
or requirements management. Also, we aim to
propose approaches for managing dependencies
according to the needs in each specific situation. This 
paper provides a first step towards this research goal, 
by providing an overview of the current state of
requirements interdependency research, by
developing an integrated classification of
fundamental interdependency types discussed in the
literature, and formulating a research agenda for
further research. 

The amount of literature addressing requirements
interdependencies is fairly small and it approaches
the area from different perspectives. Pohl [4] as well
as Ramesh and Jarke [6] discuss the topic as part of
requirements traceability, focusing on requirements
management as well as change management. The
effect requirements interdependencies have on
requirements selection or release planning is
discussed by Karlsson et al [5], Carlshamre and
Regnell [9] and Carlshamre et al [2]. Robinson et al
[8] reports on requirements interaction management,
which deals with identifying how requirements may
affect each other’s achievement. 

The aim of this paper is, as stated above, to
provide an overview of the current state of
requirements interdependency research. Our first step 
was to explore which types of interdependencies that 
are currently known. This was done by compiling the 



56

different views found in the literature, by identifying
common patterns among described types to discover
fundamental ones. The result is a classification of
known interdependency types presented in Section 4. 
The classification is neutral with respect to
development situations. It needs to be further
elaborated with respect to the specific needs within
the different development situations where
requirements interdependencies affect the work. We
have also formulated a research agenda, where
fundamental problems when dealing with
interdependencies have been identified as well as
identified some initial development situations where
it is considered important to take requirements
interdependencies into account.

The paper is organised as follows. Section 2
places requirements interdependency into its context
– requirements traceability. We also provide a brief
overview of the area an a discussion about the term
interdependency. An overview of the literature found 
addressing requirements interdependencies are
provided in Section 3 together with some preliminary 
findings from an ongoing interview survey. This is
then compiled into a neutral classification of
fundamental interdependency types presented in
Section 4. This section also includes the research
agenda developed for requirements interdependency
research. The paper ends with some concluding
remarks in Section 5. 

2. Traceability: a Basis for Understanding 
Requirements Interdependencies

Requirements traceability has been acknowledged
as an important part of software and information
systems development [4, 11, 12] supporting various
activities during the life of a software system. We
view the area as a basis for addressing requirements
interdependencies. The topic is well-explored,
judging by the large amount of literature describing
both theoretical and empirical studies (see e.g. 4, 13,
11, 14, 15, 16, 17]. Ramesh and Jarke [6] present an
extended overview of the current state of research
within the area, based on several years of research.

There are several definitions of the term
traceability [see e.g. 6, 18, 19, 4]. In this paper, we
have chosen to define traceability as the "ability to
describe and follow the life of a requirement, in both
forward and backward direction, ideally through the
whole system life cycle" [20, pp. 32, based on 14].

The definition indicates that requirements traceability 
can be divided into two main types: pre-traceability
and post-traceability (Figure 1). Pre-traceability
refers to those aspects of a requirement’s life before
it is included in the requirements specification [14]
and is focused on enabling a better understanding of
the requirement. Post-traceability, on the other hand
refers to those aspects of a requirement’s life from
the point in time when it has been included in the
requirements specification [14] and is focused on
enabling a better understanding and acceptance of the 
current system/software. 

Domain
Requirements
Documents/
Repository

Design
Documents/
Components

Forward-to traceability

Forward-from traceabilityBackward-from traceability

Backward-to traceability

PRE-TRACEABILITY POST-TRACEABILITY

BR

S

SDoc

BR

R3

R1.2

R3.1

R2

R1

C3

C2

C1

BR

Doc

R1.1

Figure 1: Different types of traceability

Requirements pre-traceability is hence concerned
with requirements production and focuses on the
domain with which we interact when the
requirements are developed and in which the systems 
is to be installed. Requirements post-traceability is
concerned with requirements deployment and is
focused on the software that is developed based on
the requirements. Pre- and post-traceability may also
be divided into four traceability types, which are
presented in [21]. According to [6] traceability
information provides important support within
requirements engineering, design, systems evolution,
and test procedures.

The various types of traceability links presented in 
Figure 1 support different situations and activities
during the development and maintenance of the
software system. None of these will alone give full
traceability support (see [3]). Different stakeholders
are also usually interested in different types of
traceability information. Despite this, current
literature and standards provide few guidelines
regarding which type of information should be
captured and used in what context [6].

Traceability is concerned with tracing
relationships between trace objects of various types,



57

e.g. requirements, rational, document, process stages
etc. In this paper, we focus on relationships between
a specific type of trace object – namely explicitly
stated requirements (showed by the shaded area in
Figure 1). The term dependency is used in fairly
different manners by different authors. Pohl [4] has a 
broad view of the term and has defined 18 different
dependency types (see Figure 2). Ramesh and Jarke
[6], on the other hand, use the term in a more specific 
sense, distinguishing between dependencies and
other types of relationships. This implies that the
term dependency can either be seen as a synonym for 
the term relationship, or as a stronger connection
between two objects, where the objects affect each
other in some way, e.g. in case of changes. In this
paper, we will not distinguish between dependency
and relationship. We are interested in exploring the
different manners by which requirements can relate
to each other, which may mean that they affect each
other as well. We have also chosen to use the term
interdependency to emphasise that the relationships
that we focus on are those that exist between trace
objects of the same type.

3. Requirements Interdependencies –
Current State of Research

This section aims at providing an overview of the
current state of research on requirements
interdependencies by outlining findings from the
literature concerning requirements interdependency
types and affected development situations as well as
findings from an ongoing interview survey. The
complete set of requirements interdependency types
found in the literature are presented in [22]. These
are discussed and compiled into a neutral
classification of fundamental requirements
interdependencies presented in Section 4. We have
delimited our survey to literature explicitly
discussing interdependencies between requirements.

3.1. Requirements Interdependencies – a
Literature Review

The area of requirements interdependencies is
fairly unexplored judging by the relatively small
amount of literature discussing it. However, there are 
some milestones within this field of research. 

In the early days of traceability research, Pohl [4]
developed a traceability framework, which included a 

dependency model defining 18 different types of
possible dependency links (Figure 2). Pohl’s model
describes dependency types that can exist between
any type of trace object used in the requirements
engineering process. We focus on requirements
interdependencies, but there are most certain some
correlations between these general dependencies and
requirements interdependencies, which motivate why
this dependency model is relevant for our
investigation.

Dependency
Types

Abstraction

Refines

Generalizes

ElaboratesEvolutionary

Formalizes

Based_on

Satisfies

Replaces

Comments

Documents

Background

Purpose

Test_case_
for

Example_
for

Content

Conflicts

Contradicts

Compares

Similar

Precondition
Condition

Constraints

Figure 2: The dependency model [4]

However, Pohl’s dependency model must be
somewhat adapted and specialised towards
requirements interdependencies to be useful in our
research. There are some dependency types included
in Pohl’s model that clearly cannot exist between
requirements (see [22] for a description of the
categories and dependency types in the model).
These are the category “Documents” and the
dependency type “Compare”, which are therefore
excluded from further discussion regarding this
dependency model. In the other cases, the term trace
object in the description of the dependency types
may be replaced by requirement and we will use this
interpretation in the forthcoming discussion.

Even though Pohl’s model is a valuable starting
point for our research, the categories and dependency 
types presented in Pohl’s model are sometimes
difficult to clearly distinguish from each other. There 
are also additional requirements interdependency
types found in subsequent literature. There is hence a 
need to adapt and revise this model in order to
develop a model focusing specifically on
requirements interdependencies and also to
incorporate recent research.

Pohl mentions that knowledge about how the
requirements have evolved, and hence relate to each
other, is considered to be important when dealing



58

with changes and change integration. Kotonya and
Sommerville [3] agree with this view and states that
the notion of requirements interdependency is one of
the most important aspects of traceability, from a
change management perspective. These dependency
types are a considerable part of Pohl’s model (both
abstraction and evolutionary). Pohl also identifies
requirements interdependencies as an enabler of
identifying reusable software components. If similar
requirements are detected when the stated
requirements are compared with existing
requirements, this indicates a reusable component.
The dependency type “Similar” is included in the
model.

Karlsson et al [5] have developed an approach for
requirements selection, through pair-wise
comparison. They state that requirements
prioritisation approaches must include means for
managing requirements interdependencies in order to
fully support developers. Due to these
interdependencies, requirements cannot be treated as
stand-alone artefacts. For example, if you choose to
implement a high priority, low cost requirement, you
may also have to implement a low priority, high cost 
requirement. Requirements can hence not be selected 
based solely on priority. Karlsson et al [5] concludes
that there is a lack of support for requirements
interdependencies, one particular where the impact of 
including or excluding requirements can be observed. 
They have identified an initial set of interdependency 
types, which they considered as relevant in the
context of requirements selection (see [22]).

Carlshamre and Regnell 98] agree with [5] and
conclude that release planning is a very complex
task, due to requirements interdependencies.
Management of requirements interdependencies are
considered to be especially important when the
requirements are “fostered asynchronously in a life
cycle model”, since they connect the requirements
fragments. Future research is claimed to be needed
concerning the different types of interdependencies
that exist between requirements. Carlshamre and
Regnell [9] describe some types of interdependencies 
(see [22]).

Carlshamre et al [2] have continued the work of
[5] and [9], and conducted an industrial survey on
requirements interdependencies within release
planning. Six different types of interdependencies
were identified (see [22]), partially based on the
types presented in [5], and analysed in relation to 20
high priority requirements within five different

companies. The findings from this survey are that
there are few single requirements, i.e. requirements
with no relationship to other requirements. It was
sometimes fairly difficult for the respondents in the
study to choose interdependency type for a
relationship between two requirements, because more 
than one interdependency type could be used. There
was hence a need to prioritise the interdependency
types. It was also concluded that requirements
interdependencies are rarely identified explicitly.
There are several reasons for this. The large amount
of interdependencies results in difficulties to identify
and manage dependencies. Requirements
interdependencies are also fairly fuzzy, meaning that
the relationship they describe can be more or less
critical. If R1 increases the implementation cost of
R2, it could be a large increase or an insignificant.
This problem is also discussed by [6], who states that 
it is fairly difficult to identify the strength of an
interdependency link. Even though pair-wise analysis 
of requirements also supports identification of other
problems with the requirements, it requires much
time. It is important to find ways of reducing the
assessment time and Carlshamre et al discuss some
approaches to this end.

Ramesh and Jarke [6] have taken the first steps
towards reference models for requirements
traceability. They do not focus on requirements
interdependencies, but, as we stated above,
requirements interdependencies is a traceability
problem. According to [6] companies with a
simplistic traceability practice also document
traceability links between requirements in order to
model requirements traceability. Most of the
interdependency types discussed are related to
requirements management and requirements
evolution (see [22]). Ramesha and Jarke [6] also state
that the decomposition of high level requirements
into more detailed requirements, is important to keep
track on, e.g. in order to manage the explosion in the 
number of requirements as well as facilitating
understanding of the requirements by mapping them
back to their sources. 

Ramesh and Jarke [6] also emphasise that it is
neither feasible nor desirable to maintain links
between all related requirements and output produced 
during the development process, due to the overheads 
involved in maintaining traceability links. Instead, it
is more feasible to identify the critical requirements
and to concentrate on storing the relevant traceability
information for those. 



59

Robinson et al [8] report on an area called
requirements interaction management. This area
focuses on managing relationships between
requirements, which may interfere with each other’s
achievements. The idea is to identify requirements
that cannot be satisfied simultaneously. Robinson et
al has hence taken an implementation or realisation
oriented view on requirements interdependencies.
The main aim is to manage conflicts between
requirements, and identify the problems with
satisfying requirements at requirements definition
time. Robinson et al have also defined a number of
different requirements interdependency types (see
[22]).

An approach for systematic recycling of
requirements between requirements documents
referring to product variants is presented by von
Knethen [4], who also considers it important to
ensure that all related requirements to a copied
requirement are transferred to the recycled document. 
There are some interdependency types presented and
used within this approach (see [22]).

We can hence conclude that several different
types of interdependencies are presented in the
literature and that different activities or development
situations are in focus (see Section 4). 

3.2. Some findings from an Ongoing
Interview Study

This section presents some preliminary results
regarding requirements interdependencies from an
ongoing interview study. The study focuses on
current practice and challenges concerning
requirements engineering in Swedish software
industry, and one part of the study is more
specifically focused on requirements
interdependencies. For more information about the
study, see [23, 24].

Generally, most of the respondents in the study
acknowledge that requirements do relate to and affect 
each other. However, not many of the participating
companies documented requirements
interdependencies explicitly. Instead, the
requirements were clustered, usually with respect to
which requirement that should be implemented
together. This could e.g. depend on whether the
requirements concerned the same part of the system,
if it would be cost efficient to implement the

requirements at the same time, or if they should be
implemented by the same person. 

The interdependency types mentioned by the
respondents were mainly conflict and cost of
implementation. Conflicting requirements affect each 
other’s achievements, and the main work is to make
trade-offs regarding how to implement the different
requirements. Cost of implementation is concerned
with identifying requirements that can/should be
implemented at the same time, since this decreases
the implementation cost. Duplicates and similar
requirements were also mentioned. 

Requirements interdependencies that are easy to
discover are also considered easy to manage without
documenting them. These interdependencies are
handled ad-hoc through experienced and
knowledgeable personnel. Instead, it is those
requirements interdependencies that are difficult to
identify that are problematic to deal with. Also, it is
sometimes possible to identify that there is an
interdependency, but the consequences of the
dependency is difficult to comprehend. Usually these 
interdependencies exist between non-functional
requirements.

4. Towards a Model of Fundamental
Interdependency Types

Before we can enter deeply into addressing how to 
manage requirements interdependencies in different
situations, we first need to compile the different
views expressed in the literature into an integrated
model, which is neutral with regard to development
situation. One identified problem is to choose
between different types of interdependencies and
Pohl’s dependency model alone comprises 18 types.
Also, judging by the discrepancies between
requirements interdependency types presented in the
literature, there is still some work to be done. 

In trying to penetrate the ideas behind the different 
contributions in the literature it has become clear to
us that the perspective that the authors take on the
area results in slightly different classifications. In
essence, these classifications seem to be influenced
by what some stakeholder wants to do with the
requirements as part of the development process, e.g. 
requirements selection or release planning. Also, the
various classifications overlap and the meaning of
certain terms, which denote the types, are not clear in
the area as a whole. E.g. the term “temporal



60

dependency” is given different meanings by different 
authors. The complete list of interdependency types
on which we base our analysis can be found in [22].

Based on the literature and also on some
intermediary results from an ongoing interview
study, we have developed a classification (Figure 4),
which could be considered to be a first step towards
developing an overall, neutral model of fundamental
requirements interdependencies. 

This classification will most likely need to be
further elaborated and most of all validated, e.g.
using a number of different sets of requirements.
Since we have focused on identifying a few types
that we so far consider to be fundamental, these may
later be adjusted or extended to suit different needs in 
the software development process, e.g. in
requirements selection or release planning.

Fundamental
Interdependency Types

Cost/Value
Interdependencies

Increases/Decreases
_cost_of

Structural
Interdependencies

Conflicts_with

Similar_to

Explains

Requires

Increases/Decreases
_value_of

Influences

 Figure 4: The new classification

Taking this stance we have identified two
categories of interdependencies that could be
considered to be fundamental and more or less
neutral. We tentatively call them STRUCTURAL and
COST/VALUE interdependencies.

4.1. Structural Interdependencies

Structural interdependencies are concerned with
the fact that given a specific set of requirements, they 
can be organised in a structure where relationships
are of a hierarchical nature as well as of a cross-
structure nature. Often high-level business
requirements are gradually decomposed into more
detailed software requirements. Also, requirements
from different parts of a hierarchy may influence
each other across the overall hierarchy. We find that
the following interdependency types fall into this
category:

Requires
The fulfilment of one requirement depends on the

fulfilment of another requirement. This type can be
used to describe a hierarchical relation between two
requirements, but also relations across hierarchical
structures.

This dependency type is derived from the
interdependency types “requires” [2], “and” [2],
“logical” [9] and “must-exist”[5]. This relationship
can also be viewed in the opposite direction i.e.
instead of R1 requires R2, R2 is a prerequisite for R1 
[2]. The interdependency type Requires then also
covers “precondition” mentioned by Pohl [4].
Carlshamre et al [2] concludes in their investigation
that the temporal dependency type [9, 2, 8] is seldom 
interesting. It may either be viewed as a Requires
dependency or an Increase/decrease_cost_of
dependency (see 4.2). We have chosen to agree with
this view, since a temporal interdependency also is
useful from the perspective of which activity that
should be performed and is hence not neutral.

The “or” dependency [2] is difficult to categorise,
since it can be related to different interdependency
types. The “or” dependency relates alternative
solutions to each other, which e.g. may be required
by another requirement i.e. R1 requires some of the
following requirements {R2, R3, or R4}. Clearly, this 
dependency type requires more research in order to
be fully understood. 

“Satisfy” [4] and “positive correlation” [8] can be
viewed as a weaker dependency of the type require.
They both concern linking requirements, which
support the fulfilment of another requirement. In this
context, the require dependency type is used when
R1 must be implemented in order to fulfil R2, while
“satisfy” and “positive correlation” is weaker and
describes a situation where the fulfilment of R1 have
a positive effect on the fulfilment of R2. 
Explains

A general requirement is explained by a number
of more specific requirements. This dependency type
is used to describe hierarchical structures of a weaker 
nature than Requires and relates more detailed
requirements to their source requirements. If a
detailed requirement is derived from a high level
requirements, but it is not a prerequisite for this
requirement, the relation is of the dependency type
explain.

This dependency type covers “elaborate”,
“part_of”, “is_a” and “derive” from Ramesh and
Jarke [6], and “elaborate”, “formalise”, “replaces”,



61

“generalises”, “refines” and “based_on” by Pohl [4]
as well as “refinement” from von Knethen et al [7].
As stated above, we seek to identify basic
interdependency types, and these are fairly similar
and may be difficult to distinguish. We have
therefore chosen to summarise them into one overall
dependency type. 
Similar_to

One stated requirement is more or less similar to
one or more other requirements. 

This interdependency type corresponds with
“similar” [4] and “structure” [8]. This
interdependency type is also mentioned within the
interview study. Natt och Dag [25] presents an
evaluation of the feasibility to use natural language
processing techniques to identify duplicates within a
requirements set. 
Conflicts_with

A requirement is in conflict with another
requirement if they cannot exist at the same time or if 
increasing the satisfaction of a requirement decreases
the satisfaction of another requirement. 

This interdependency type includes both situations 
were it is impossible to implement both
requirements, and situations were these have a
negative influence on each other’s achievements and
a trade-off between the resolution of the requirements 
must be made. It hence covers “constraint” [4],
“negative correlation” [8], “conflict” [4] and
“cannot_exist” [5]. Conflict is also one of the most
frequently mentioned interdependency types in the
interview survey. Robinson et al [8] has a strong
focus on conflict dependencies, and present some
relations, which can be interpreted as reasons for the
conflict e.g.  “resource”, “tasks” and “causality”.
Influences

A requirement has an influence on another
requirement.

It is indicated in the literature that a requirement
may affect or influence another requirement in other
ways than requires, explains and conflicts. Both [6]
and [7] has a fairly general interdependency type,
termed “depend_on” and “dependency”. Our
hypothesis is that more dependencies can be
identified, especially when this classification is
further elaborated with respect to different
development activities or situations. However, at this
stage we choose to include a general interdependency 
type which can be used if a relationship between two
dependent requirements is not of the type “requires”,
“explains” or “conflicts_with”. 

4.2. Cost/value Interdependencies

Cost/value interdependencies are concerned with
the costs involved in implementing a requirement in
relation to the value that the fulfilment of that
requirement will provide to the perceived
customer/user.

The following interdependency types fall into this
category:
Increases/Decreases_cost_of

If one requirement is chosen for implementation 
then the cost of implementing another requirement 
increases or decreases. 

This interdependency type includes “icost” [2], 
“positive cost” and “negative cost” [5] as well as 
“value-related” [9].
Increases/Decreases_value_of

If one requirement is chosen for implementation
then the value to the customer of another requirement 
increases or decreases. 

This interdependency type covers “cvalue” [2] as
well as “positive value” and “negative value” [5]. 

4.3. A Research Agenda

Apart from developing a reference model of
fundamental requirements interdependencies and
extending this to cater for specific needs in the
software development process, we can identify three
major issues for research in the area of requirements
interdependencies:

How can we identify requirements
interdependencies? The problems within
requirements interdependencies are not only
concerned with how to record and maintain links
between related requirements. These relationships
must also be identified somehow. Some
interdependencies may be easy to discover when
analysing the requirements set, but there are
interdependencies, which are more difficult to
identify. In addition, it can also be difficult to
identify how the requirements affect each other,
especially regarding non-functional requirements.
We need to investigate how to identify requirements
interdependencies as well as to explore how
requirements affect each other. Pohl [4] has proposed
a method for automatically recording traceability
links. Carlshamre et al [2] describe how to use pair-
wise analysis of the requirements to discover
interdependencies, and they also discuss several



62

alternatives regarding how to decrease the time
required performing this analysis. Both these
approaches assume that the developers know how the
requirements affect each other. There is, however, a
need for approaches focusing on how the explore the 
consequences of an interdependency, i.e. how the
requirements affect each other. 

How can we describe requirements
interdependencies? When the different relationships
between requirements have been identified we must
also provide support for storing and managing them.
A common problem in current traceability tools is
that they provide means to store a relationship
between requirements but they provide very little
guidance regarding the semantic and inherent
meaning of the relationship [6]. There is also a need
for mechanisms identifying the most critical
interdependencies, because it is not feasible to link
every related requirement. It must hence be possible
to show the strength of the interdependencies [6, 2]. 

Requirements traceability research includes
several alternative approaches for recording and
managing traceability links. One important research
issue is to investigate which of those are suitable for
recording and managing requirements
interdependencies. Also, Carlshamre et al [2]
presents one approach for describing requirements
interdependencies. This approach is built on
visualisation, which is considered as an important
feature for this issue. It could also be relevant in this
context to look at different techniques for goal
modelling (see e.g. [26]) as a means to model and
describe interdependencies, since requirements could
be considered to be low-level goals. The F3

Enterprise Modelling language [27], more
specifically a sub-model denoted the Information
Systems Requirements Model, also includes means
of describing requirements interdependencies, based
on this notion.

How do we use requirements
interdependencies in the software development
process? According to Ramesh and Jarke [6],
literature and standards within requirements
traceability provide few guidelines regarding what
type of information that must be captured and used in 
what context. An important research issue is,
therefore, to investigate what it means in different
contexts when we state that there is an
interdependency. As indicated by the literature,
different types of interdependencies are important in
different development activities or as basis for

various decisions. Another important research issue
is to explore which types of interdependencies are
critical to consider in different situations. The first
step towards this is to investigate what types of
activities are affected by requirements
interdependencies. As a starting point the following
activities, mentioned in the literature, can be used. 

Requirements Management is concerned with
managing the large amount of requirements and
information elicited during requirements engineering
[10]. Capturing requirements interdependencies may
be useful in this phase since it provides an overview
of how the high level requirements are decomposed
into more detailed requirements [6]. Keeping track of 
the derived requirements is also a way of managing
the fast increasing number of requirements. 

Change management. One of the major
challenges in software development is the constant
evolution and change of requirements [6].
Requirements interdependencies are shown to be
useful in this context since it shows the evolution of
requirements. Requirements interdependencies also
allow us to view the major assumptions behind a
requirement, by relating it to the originating
requirement. However, one of the most important
benefits of requirements interdependencies is that
they show how requirements relate to and affect each 
other, which, hence, facilitates impact analysis of
change proposals [3, 4]. 

Release planning is an activity concerned with
selecting an optimal collection of requirements for
implementation in the next version of a system. The
selection is usually based on requirements priority.
However, due to the fact that requirements are related 
to and affect each other, priorities cannot be the only
basis [9]. Knowledge about how requirements
interact and restrict each other is, therefore, an
important basis for these decisions. 

Reuse of components. If similarity between
requirements is documented, these interdependencies
can be used to identify reusable components by
comparing the stated requirements with the
requirements of the existing system [4]. 

Reuse of requirements. When requirements are
reused in requirements documents describing various
variants of a product, it is considered as relevant to
ensure that all requirements related to a copied
requirement is transferred to the recycled document
[7].

Implementation. Software design is to a large
extent concerned with decision-making. Many trade-



63

offs are made e.g. to decide the scope and
functionality of the system as well as between
implementation cost and other resources [6].
Requirements interdependencies may support these
types of trade-offs and decisions, e.g. by revealing
interaction between requirements which may
interfere with their achievement [8].

Testing. A potentially interesting area where
requirements interdependencies may be a relevant
aspect to take into consideration is software testing.
During this activity, test cases are developed based
on the requirements which fulfilment is supposed to
be ensured. Since requirements relate to and affect
each other, their knowledge about requirements
interdependencies may affect the ability to create
purposeful and complete test cases.

Maintenance. Few software and information
systems are stable once they are implemented in the
organisation. Most systems continuously evolve due
to changes in organisation or users needs, or due to
errors made during the development [4].
Requirements interdependencies are useful in this
context, since it shows how changing requirements
affect other requirements already implemented in the 
software.

5. Concluding Remarks

Keeping track of requirements interdependencies
is essential in order to support several situations and
activities within the system development process.
However, there is little known about the nature of
requirements interdependencies, which is shown by
the relatively small amount of literature discussing
the phenomenon. 

This paper compiles the different views of
requirements interdependencies found in the
literature. It also takes a first step towards what we
call a neutral classification of fundamental
requirements interdependencies. In this classification, 
interdependencies are grouped in two main
categories; structural and cost/value
interdependencies.

A research agenda for requirements
interdependencies has also been outlined. The first
step is to further elaborate and validate the
classification framework presented in this paper in
relation to development activities or situations
affected by requirements interdependencies. Other
research issues are related to the identification,

documentation and use of requirements
interdependencies.

We have mainly addressed the area of
requirements interdependencies from a theoretical
point of view in this paper. The main concern for the 
future, however, is to focus on empirical research
that gives a useful contribution to solving pressing
problems in the field of software development
practice.

References

[1] Regnell, B., Paech, B., Aurum, A., Wohlin, C., Dutoit,
A. and Natt och Dag, J. (2001). Requirements Mean
Decisions! – Research issues for understanding and
supporting decision-making in Requirements Engineering,
First Swedish Conference on Software Engineering
Research and Practise (SERP’01), October 25-26,
Ronneby, Sweden

[2] Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B.
and Natt och Dag, J. (2001) An Industrial Survey of
Requirements Interdependencies in Software Product
Release Planning, Fifth International Symposium on
Requirements Engineering, 27-31 August, Toronto,
Canada.

[3] Kotonya and Sommerville (1998) Requirements
Engingeering – Processes and Techniques, John Wiley &
Sons.

[4] Pohl, K (1996) Process-Centered Requirements
Engineering, John Wiley & Sons Inc.

[5] Karlsson, J., Olsson, S. and Ryan, K. (1997) Improved
Practical Support for Large-scale Requirements
Prioritisation, Requirements Engineering Journal, 2(1), p.
51-60

[6] Ramesh, B. and Jarke, M. (2001) Toward Reference
Models for Requirements Traceability, IEEE Transactions
on Software Engineering, Vol.27, no1., p. 58-93

[7] von Knethen, A., Peach, B., Kiedaisch, F. and Houdek, 
F. (2002) Systematic Requirements Recycling through
Abstraction and Traceability. Proc. of IEEE Joint
International Conference on Requirements Engineering, 9-
13 Septermber, Essen, Germanny, pp. 273-281.

[8] Robinson, W.N., Pawlowski, S.D. and Volkov, V.
(1999) Requirements Interaction Management, GSU CIS
Working Paper 99-7, Department of Computer Information 
Systems, Georgia State of University, Atlanta. 
(Printed 041201 from http://cis.gsu.edu/~wrobinso)

[9] Carlshamre, P. and Regnell, B. (2000) Requirements
Lifecycle Management and Release Planning in Market-
Driven Requirements Engineering Processes, Second



64

International Workshop on the Requirements Engineering
Process, Grenwich, London. 

[10] Grehag, Å. (2001) "Requirements Management in a
Life-Cycle Perspective - A Position Paper". In Ben
Achour-Salinesi, C., Opdahl, A.L., Pohl, K. and Rossi, M.
(Eds) Proceedings of the Seventh International Workshop
on Requirements Engineering: Foundation for Software
Quality, REFSQ’01, Interlaken, Switzerland. Essenere
Informatik Beiträge, pp. 183-188.

[11] Gotel, O. (1995) Contribution Structures for
Requirements Traceability, PhD Thesis, Department of
Computing Imperial Collage of Science, Technology and
Medicine, University of London. 

[12] Maciaszek, L.A. (2001) Requirements Analysis and
System Design – Developing Information Systems with
UML, Addison Wesley.

[13] Jarke, M., Rolland, C., Sutcliffe, A. And Dömges, R.
(1999) The NATURE of Requirements Engineering, Shaker 
Verlag, Aachen. 

[14] Gotel, O. and Finkelstein, A. (1994) An Analysis of
the Requirements Traceability Problem, In Proc. of the 1st

international Conference on Requirements Engineering,
Colorado Springs, Colorado, USA, p. 94-102

[15] Ramesh, B. (1993) A Model of Requirements
Traceability for Systems Development, Technical report,
Naval Postgraduate School, Monterey, CA, USA,
September.

[16] Ramesh, B., Powers, T., Stubbs, C. and Edwards, M.
(1995) Implementing Requirements Traceability: A Case
Study, In Proc. of the 2nd International Symposium on
Requirements Engineering, York, England, p. 89-93.

[17] Gotel, O. and Finkelstein, A. (1997) Extended
Requirements Traceability: Results of an Industrial Case
Study, In Proc. 3rd International Symposium on
Requirements Engineering (RE97), IEEE Computer
Society Press, p. 169-178.

[18] IEEE-830 (1994) Guide to Software Requirements
Specification, ANSI/IEEE Std. 830, Institute of Electrical
and Electronics Engineers, New York

[19] Johnson, W.L., Feather, M.S. and Harris, D.R. (1991)
Integrating Domain Knowledge, Requirements, and
Specifications, Journal of Systems Integration, 1, p. 283-
320.

[20] Jarke, M. (1998) Requirements Tracing,
Communication of the ACM, December 41(12).

[21] Davis, A.M. (1990) The Analysis and Specification of 
Systems and Software Requirements, In Systems And
Software Requirements Engineering, IEEE Computer
Society Press, p. 119-144

[22] Dahlstedt, Å. and Persson, A. (2003) “An Overview of 
Requirements Interdependency Types”.
http://www.ida.his.se/ida/~asa/ReqInterdependencies.pdf

[23] Karlsson, L., Dahlstedt, Å., Natt och Dag, J., Regnell, 
B. and Persson, A. (2002) Challenges in Market-Driven
Requirements Engineering - an Industrial Interview Study,
Eighth International Workshop on Requirements 
Engineering: Foundation for Software Quality (REFSQ), 
September, Essen Germany.

[24] Dahlstedt, Å. G., Karlsson, L., Persson, A., Natt och
Dag, J. and Regnell, B. (2003) “Market-Driven
Requirements Engineering Processes for Software Products 
- a Report on Current Practices.” Submitted to
Development of Product Software, DoPS-03, 20 and 21
June 2003, Velden, Austria. 

[25] Natt och Dag, J., Regnell, B., Carlshamre, P.,
Andersson, M. and Karlsson, J. (2002) ”A feasibility study
of automated natural language requirements analysis in
market-driven development. “ Requirements Engineering,
7, pp. 20-33.

[26] Bubenko J.A. jr, Persson A., Stirna J. (2001) User
Guide of the Knowledge Management Approach Using
Enterprise Knowledge Patterns, deliverable D3, IST
Programme project HyperKnowledge -- Hypermedia and
Pattern Based Knowledge Management for Smart
Organisations, project no. IST-2000-28401, Dept. of
Computer and Systems Sciences, Royal Institute of
Technology, Stockholm, Sweden, 
available on http://www.dsv.su.se/~js/ekd_user_guide.html

[27] Bubenko jr., J. A., “Extending the Scope of
Information Modelling”, Fourth International
Workshop on the Deductive Approach to Information 
Systems and Databases, Lloret, Costa Brava
(Catalonia), Sept. 20-22, 1993. Department de
Llenguatges i Sistemes Informatics, Universitat
Politecnica de Catalunya, Report de Recerca LSI/93-
25, Barcelona.



65

A Relation-based Approach to Use Case Analysis

A.Fantechi*, S.Gnesi^, G.Lami^

*Dip. di Sistemi e Informatica - Università di Firenze – Italy
^ISTI - C.N.R. - Area della Ricerca C.N.R. di Pisa - Italy

Abstract

Use Cases are an effective tool for modeling functional 
requirements of software systems. A well written Use Case 
allows to depict a large amount of information regarding 
the behaviour of the system, as perceived by the actors. Use 
Cases have the advantage to be expressed using  Natural 
Language expressions that have a fixed structure and this 
can mitigate some of  the usual, NL-inherent, problems of 
interpretation. In this paper, we present an approach that, 
starting with the application of NL processing techniques to 
the Use Case scenarios, derives semantic information on the 
relations between the actors. This information, largely
achievable in an automatic way, can be used to support the 
analysis of Use Case requirements document and it
represents a starting point towards the formal verification
of some relevant aspects.

1. Introduction

The problem of the analysis of software requirements with 
respect to some consistency and correctness parameters has 
been extensively exploited in several ways in recent years
[18]. For example, formal methods and tools have been used
for this purpose when a formal representation of software 
requirements has been adopted.
Currently, in the common practice formal notations are not 
always used in the first description of the system. More 
frequently Natural Language (NL) expressions are used to 
represent software requirements [15, 20]. It is hence quite 
important to provide methods and tools for the consistency 
and correctness analysis of them starting from their NL 
representation.
Use Cases are a powerful tool to capture functional
requirements for software systems. They allow structuring 
requirements documents with user goals and provide a
means to specify the interactions between a certain software 
system and its environment. In his book [5], Alistair
Cockburn presents an effective technique for specifying the 
interactions between a software system and its environment. 
The technique is based on natural language specification for 
scenarios and extensions. Scenarios and extensions are
specified by phrases in plain English language. This makes 

requirements documents easy to understand and
communicate even to non-technical people. 
The typical structure of Use Cases makes their analysis 
easier and  more effective than classic Natural Language
sentences. Quality is determined by the fulfilment of some 
predefined characteristics (target qualities) that in the case 
of Use Cases can be classified into three main groups:
Expressiveness, Completeness and Consistency.
- Expressiveness category: it includes those

characteristics dealing with the understanding of the
meaning of Use Cases by humans, such as Ambiguity or
Understandability

- Consistency  category: it includes those characteristics 
dealing with the presence of semantic contradictions
and structural incongruities in the NL requirement
document.

- Completeness category: it includes those characteristics 
dealing with the lack of necessary parts within the 
requirement specifications.

The quality of NL components of Use Cases (typically
sentences), may be analysed from a lexical, syntactical or 
semantical point of view [10]. For this reason it is proper to 
talk about, for example, lexical non-ambiguity or semantical
non-ambiguity rather than non-ambiguity in general [12,14].
For instance, a NL sentence may be syntactically non-
ambiguous (in the sense that only one derivation tree exists 
according to the syntactic rules applicable) but it may be 
lexically ambiguous because it contains wordings that have 
not a unique meaning. 
In the practice expressiveness-related issues can be
addressed by means of existing NL-based techniques and 
tools  [2,8,11,17, 22]. For example, ambiguity mitigation 
may be addressed in the following ways: 
- By lexical evaluation: using lexical parsers to detect

and possibly correct terms or wordings that are
ambiguous.

- By syntactical evaluation: using syntactical analysers to 
detect sentences having different interpretations.

Understandability improvement may be addressed by lexical 
and syntactical evaluation as well: using linguistic parsers 
both to detect poorly understandable or complex parts of the 
document and to achieve readability indicators (metrics) 
based on the count of elements of the sentences (e.g. the 
number of characters or words of the sentences , the average 
length of the sentences, …).



66

It is more difficult to exploit NL-based techniques and tools 
able to provide some help in addressing Consistency and 
Completeness issues, because it is necessary to capture, at 
least at some level, the semantics of the Use Case under 
evaluation.

In this paper we present a methodology for the analysis of 
the Use Case based requirements documents. This
methodology is aimed to extract semantic information from 
the Use Cases, based on NL processing techniques. This 
information regards the functional relations between the
actors of the Use Case based requirements specification. 
From the elementary relation between two actors
determined by the verb in a sentence we discuss how to 
derive more complex relations between the concepts present 
in the Use Cases description, which may help in assessing 
consistency and completeness issues. This derivation can be 
largely supported by automatic tools.

This paper is structured as follows: in section 2 we describe 
the kind of Use Cases we will consider and in section 3 we 
present our approach to support the analysis of consistency 
and completeness based on linguistic techniques . In section 
4 we discuss how to derive the  relations, presenting an 
integrated environment for the lexical, syntactical and
semantic analysis of NL requirements that can be used to 
this aim. In section 6 we discuss the possible use of the 
relational approach and the related opportunities to improve 
the analysis of Use Case-based requirements documents.

2. Use Cases

A Use Case describes the interaction (triggered by an 
external actor in order to achieve a goal) between a system
and its environment. A Use Case defines a goal-oriented set 
of interactions between external actors and the system under
consideration. The term actor is used to describe the person 
or system that has a goal against the system under
discussion. A primary actor triggers the system behaviour in 
order to achieve a certain goal. A secondary actor interacts 
with the system but does not trigger the Use Case.
A Use Case is completed successfully when that goal is 
satisfied. Use Case descriptions also include possible
extensions to this sequence, e.g., alternative sequences that 
may also satisfy the goal, as well as sequences that may lead 
to failure in completing the service in case of exceptional 
behaviour, error handling, etc.. The system is treated as a 
"black box”, thus, Use Cases capture who (actor) does what
(interaction) with the system, for what purpose (goal),
without dealing with system internals. A complete set of 
Use Cases specifies all the different ways to use the system, 
and therefore defines the whole required behaviour of the 
system. Generally, Use Case steps are written in an easy-to-
understand, structured narrative using the vocabulary of the 

domain. The language used for the description is English. 
Any other natural language can be used as well, and
although our analysis focuses on English, the same
reasoning can be applied to other languages (considering the 
obvious differences in syntax and grammar rules). A
scenario is an instance of a Use Case, and represents a
single path through the Use Case. Thus, there exists a
scenario for the main flow through the Use Case, and other 
scenarios for each possible variation of flow through the 
Use Case (e.g., triggered by options, error conditions,
security breaches, etc.). Scenarios may also be depicted in a 
graphical form using UML sequence diagrams. Figure 1 
shows the template of the Cockburn’s Use Case taken from 
[6].
In this textual notation, the main flow is expressed, in the 
“Description” section, by an indexed sequence of NL
sentences, describing a sequence of actions of the system.
Variations are expressed  (in the "Extensions" section) as 
alternatives to the main flow, linked by their index to the 
point of the main flow in which they branch as a variation.
Developers have always used scenarios in order to
understand what the requirements of a system are and how a 
system should behave with respect to its environment. The 
work we present in this paper is an attempt to provide means 
to identify possible flaws in the textual scenario
descriptions.

USE CASE # < the name is the goal as a short active verb 
phrase>

Goal in 
Context

<a longer statement of the goal in context  if 
needed>

Scope & Level <what system is being considered black box 
under design>
<one of: Summary, Primary Task, Subfunction>

Preconditions <what we expect is already the state of the 
world>

Success End 
Condition

<the state of the world upon successful 
completion>

Failed End 
Condition

<the state of the world if goal abandoned>

Primary,
Secondary
Actors

<a role name or description for the primary 
actor>.
<other systems relied upon to accomplish use 
case>

Trigger <the action upon the system that starts the use 
case>

Description Step Action
1 <put here the steps of the scenario from 

trigger to goal delivery, and any 
cleanup afterwards>

2 <...>
3

Extensions Step Branching Action
1a <condition causing branching> : 

<action or name of sub.use case>
Sub-Variations Branching Action

1 <list of  variation s>

Figure 1. Use Case template



67

3. Towards Linguistic Evaluation of
Consistency and Completeness

To effectively address the Consistency and Completeness 
aspects of requirements specification, we should resort to 
their formalization, [11,23]. Indeed formal methods are a
powerful mean to evaluate requirements because they
provide a theoretical framework to verify their correctness.
Formal methods require, however, a specific skill and this 
has increased their cost and prevented their wide
application.
In this paper we investigate methods and tools that may 
provide an effective support to deal with Consistency and 
Completeness issues, but that are still based on NL analysis 
and then are more user-friendly.
Other works aiming at the improvement of the correctness 
of requirements relying on the Use Cases structure exist
[1,7]. The methods and tools we are presenting in this paper 
also rely on the structure of the Use Cases and are based on 
the study of the relations between actors of Use Case-based
description of a system.
The method we describe in this paper can be placed between 
a “lightweight” parsing [13] and a “full-fledged NL”
approach [16] and aims at demonstrating that the extraction 
of “semantic” information for a text is possible also without 
using tools and methods too heavy.
The relations we are interested in are the “functional”
relations, i.e. the relations or dependencies between two
actors. These relations can be determined looking at the
syntactical structure of each sentence of the Use Case
scenarios defining a set of items (quadruples) where each 
primary actor (the subject of the sentence) has been put in
relation with the secondary actor (the complement)
according to the verb. The canonical form of these relations 
is:

(1.) (Actor_1, verb_i, Actor_2, Use_Case_id).

Each item compliant with (1.) describes an occurrence of a 
functional relation between two actors established by the 
verb and indicates the Use Case in which this relation
occurs.
The functional relations between two actors, in the form 
(1.), can be extended, by transitivity, to other actors when 
two items with the following form exist: (Ai, v1, Aj,, UCx)
and (Aj, v2, Ak, UCy). In this way, hence, an indirect 
functional relation between the actor Ai and the actor Ak is 
also established by transitivity. Starting from this
consideration, chains joining different actors can be built, 
where each item  (Ai, vx, Aj ,UCx) of the chain is such that 
the previous item has the form (Ak, vy,  Ai, UCy) and the 
following has the form (Aj, vz, Ah, UCz).
The collection of all the items derivable from a Use Case-
based requirements document is said Relations core. The 

Relations core embeds all the elementary functional
relations between actors that can be extracted directly by the 
NL description. 
We can derive specific, non-elementary, relations from the 
relations core. In the following we provide some definitions 
and define some properties based on the elementary
relations (1.).
The ignores relation, denoted by A~B, holds if no relation 
(A, verb_i, B, Use_Case_id) exists.
The relation (1.) between actors can be used to build the 
Relation Graph. The nodes of this graph represent the actors 
and an oriented arc connecting two nodes (A and B) 
indicates that A drives B. 
Two nodes are adjacent if an arc from A to B exists.
A path from the node A to the node B on this graph is a
sequence of adjacent nodes in a graph starting from the node
A and arriving to the node B. On the basis of the Relations 
graph some further relations between actors can be defined:
The is connected to relation, denoted by A => B , holds if at 
least one path from A to B exists on the graph.
The is chief relation, denoted by A =>> B, holds if B 
ignores A and A is connected to B.
The chief graph (derived from the chief relation) is an 
acyclic graph composed of nodes (the actors) and oriented 
arcs connecting two actors, an arc originating from the node 
A and arriving in the node B means that A is chief of B.
Nodes of the chief graph having no incoming arcs are said 
leader nodes and nodes having no out arc are said executors
nodes. An example of Relation and Chief graphs are
provided in Figure 2.
The availability of the functional relations and of the graphs 
derived from them enables the capturing of some semantic 
information on the system we are describing. In particular,
this information can be used to support the detection of
critical points (in terms of consistency and completeness) in
the interactions between different actors. These critical
points can be revealed by analysing the set of derived direct 
and indirect relations.

4. Derivation of the relations between actors

The derivation of the relations core and the consequent 
construction of the relation chains, relations graph and chief 
graph, can be supported by automatic tools based on NL 
processing techniques.
In fact, the basic relations (1.) are detectable by using a 
syntactical parser able to identify the different components 
of a NL sentence. To our purpose, the key components to be 
identified are the subject(s), the verb and the complement(s) 
associated to the verb. Once this information is achieved, it 
is possible to define the relations and to build a data base 
containing the relations core derivable from the collection of 
Use Cases under analysis.



68

4.1 An example of Derivation of Relations 

In this section we present an application of the relational 
approach to a sample Use Case document, with the aim to 
clarify the concepts discussed above.
The example we present in this section is derived, with few 
changes, from a sample System Requirements Document 
available on the web at the Cockburn’s home page [24],
which is provided in Appendix 1.
This document, describing a Purchase Request Tracking 
System, has the purpose to provide the functional
requirements of a basic system for the official Buyers of the 
company, to track what they have ordered from Vendors 
against what they have been delivered. The documents is 
organised as a set of Use Cases. 
The primary actors of this document are:
- Approver: typically the requestor’s manager, who must 

approve the request.
- Authorizer: person who validates the signature from the 

Vendor.
- Buyer: person who manages the order, talking with the 

Vendor.
- Vendor: person or company who sells and delivers

goods.
- Requestor: person putting in a request to buy

something.
- Receiver: takes care of the arriving deliveries
The document contains fifteen Use Cases describing the
behaviour of the system. We slightly modified it by adding 
two new Use Cases to make it more precise and suitable for 
the analysis. The Use Cases included into the document are 
compliant with the Cockburn’s style, and they include
several data such as, for example, Preconditions, Post-
conditions, Trigger, Extensions, etc. We simplified each Use 
Case by reducing the information associated to them. In 
particular, we took into account only the Primary Actor, the 
statement of the Goal and the description of the Scenario. 
These data represent the minimum set of information
necessary to save the essential meaning of the Use Case. In 
Appendix 1, the set of the simplified Use Case we used for 
the experiment is shown.
The  outcomes of the application of the relational approach 
to the simplified Use Cases of the case study are
summarized in a collection of relations items between actors 
and a set of relations chains derived from the relations 
items.
For simplicity let us identify the actors of the case study by 
a letter:

A. Authorizer
B. Approver
C. Requestor
D. Buyer
E. Vendor
F. Receiver

Figure 2. contains the relations derived from the case study 
where each actor is identified by the corresponding letter 
along with the corresponding relation graph and chief graph. 
In the following a possible set of relations chains starting
from the relation (A, notify, B, UC3),  is provided:

- (A, notify, B, UC3), (B, send, C, UC6), (C, send, 
B, UC7).

- (A, notify, B, UC3), (B, send, C, UC6), (C, send, 
B, UC8).

- (A, notify, B, UC3), (B, send, C, UC9), (C, send, 
B, UC7).

- (A, notify, B, UC3), (B, send, C, UC9), (C, send, 
B, UC8).

- (A, notify, B, UC3), (B, send, A, UC12).
- (A, notify, B, UC3), (B, send, A, UC12), (A, 
change, B, UC3).

- (A, notify, B, UC3), (B, send, A, UC12), (A, 
send, C, UC9).

- (A, notify, B, UC3), (B, send, A, UC12), (A, 
send, D, UC16).

- (A, notify, B, UC3), (B, send, A, UC12), (A, 
send, C, UC9), (C, send, B, UC7).

- (A, notify, B, UC3), (B, send, A, UC12), (A, 
send, C, UC9), (C, send, B, UC8).

- (A, notify, B, UC3), (B, send, A, UC12), (A, 
send, D, UC16), (D, change, E, UC4).

- (A, notify, B, UC3), (B, send, A, UC12), (A, 
send, D, UC16), (D, send, C, UC9).

- (A, notify, B, UC3), (B, send, A, UC12), (A, send, 
D, UC16), (D, send, C, UC9), (C, send, B, UC7)

- (A, notify, B, UC3), (B, send, A, UC12), (A, send, 
D, UC16), (D, send, C, UC9), (C, send, B, UC8).

The table in figure 2. also shows that an ignore relation 
between C and A occurs, and it means that C doesn’t 
influence directly the A’s behaviour.

4.2 An integrated environment for Use Case 
Analysis

In this section we provide a description of MAIGRET, an 
integrated environment for natural language analysis.
MAIGRET was built with the goal to provide an automatic
support for the analysis framework of expressiveness,
consistency and completeness aspects of natural language 
requirements documents. To reach this goal we have
realized and integrated a set of tools , each one dedicated to a 
specific linguistic analysis purpose of NL sentences. In
particular (figure 3), the involved tools are a lexical analyzer 
(QuARS) [8,9], a syntactical analyzer (SyTwo/Cmap) [4,21]
able to extract items representing relations between the
entities (actors) described in the requirements document and 
a third tool (Relation Manager) having the aim of storing
and managing these relations. Figure 3 shows the high level 
architecture of MAIGRET.



69

Figure 2 : Relations between actors and graphs

MAIGRET is composed of a processing part (the
integrated tools) and of a static part (composed of the
following modules: the WordNet English dictionary; a 
semantic network modelling the domain; and a
requirements-specific dictionary) that represents its
knowledge base.
In the following we provide a more detailed functional 
description of the integrated tools.
QuARS (Quality Analyzer for Requirements
Specifications) is a sentence analyser aiming at reducing 
linguistic defects by pointing out those wordings that make 
the document ambiguous or not clear from a lexical point 
of view. The tool points out these defects without forcing 
any corrective actions, leaving the user free to decide 
whether modifying the document or not. Moreover the
sentences are analyzed

Figure 3: high level architecture of MAIGRET

taking into account the particular application domain, and 
this is possible through the use of targeted dictionaries. In 
this sense the tool has been designed to be easily
adaptable.  The following are examples of expressiveness
defects pointed out by QuARS; the underlined wordings 
are the indicators used by QuARS to point out the sentence 
as defective:

- the C code shall be clearly commented (vague 
sentence)

- the system shall be as far as possible
composed of efficient software components
(subjective sentence)

- the system shall be such that the mission 
can be pursued, possibly without performance 
degradation (optional sentence)

The first sentence contains the word “clearly” that makes 
the whole sentence vague. The second contains the
wording “as far as possible” that makes it subjective. The 
third sentence is pointed out as defective because contains 
the word “possibly” that determines an option in it .

SyTwo/Cmap is a syntactical analyser that relies on the 
Knowledge Base described before. The Knowledge Base 
is exclusively used by SyTwo/Cmap to perform the
syntactical analysis and to derive the relations. Starting 
with a Use Case description (possibly already analyzed by 
QuARS), SyTwo/Cmap performs a syntactical analysis
making the detection of syntactically ambiguous sentences
possible. A syntactically ambiguous sentence can be
pointed out if it has more than one derivation tree (i.e. the 
sequences of syntactical rules to be applied to build the 
sentence): this implies that the sentence may be
understood in different ways. For example the sentence 
“The system shall not remove faults and restore service”
may be syntactically understood at least in these two ways: 

Primay
Actor

verb Secondary
Actor

UC

A change B 3
A notify B 3
A notify B 3
D change E 4
C send B 5
B send C 6
C send B 7
C send B 8
B send C 9
A send C 9
D send C 9
D return E 11
B send A 12
D send E 14
F notify D 15
A send D 16
F send B 17

A

B
C

D

E

F

A

B

C

D

E

F

Relation Graph

Chief Graph

NL
Requirements

Document

NL Requirements
Dictionary

Domain
Model WordNet

QuARS SyTwo

Relations
Manager

Relations
Data
Base

Integration in 
an unique 
program

Knowledge Base 

lexical
&

syntactic
defects



70

1. The negation not of the auxiliary verb shall is
related to the first verb remove only, and not to the 
other verb restore. In this case, the meaning of the 
sentence is that the system shall not remove the 
faults and it shall restore the service.

2. The negation not of the auxiliary verb shall is
related to both the verbs remove and restore. In this 
case, the meaning of the sentence is that the system 
shall not remove the fault and shall not restore the 
service.

The functionalities described above for both tools allow 
therefore expressiveness characteristics to be analyzed.
More interesting for the methodology presented in this 
paper is the additional functionality offered by
SyTwo/Cmap, which is able, on the basis of the
knowledge of the syntactical structure, also to extract the 
relations between subjects, verbs and objects in a sentence, 
in a format compliant with (1.). This allows to capture all 
the relations between two actors in the problem domain.

Relations Manager: it receives as input the set of
relations derived by SyTwo/Cmap and it puts them in a 
database for analysis. Once such a database has been
populated it is  possible to:
- extract, by means of queries, sub-sets of relations.
- extract, by means of queries, sets of relation chains.
The outcomes derived from the data-base, can be used in 
support of the analysis of the requirements document in 
order to extract the interactions between actors and build 
the relation and the chief graphs.

5. Applying the Relational Approach

In this section we discuss possible applications and
developments of the relational approach to the Use Case-
based requirements engineering. 
Since relations indicate the presence of a verb in the Use 
Case relating two actors, they often indicate possible
interactions between actors. Hence, relations chains can be 
interpreted as interaction schemata. Walkthroughs of these 
interaction schemata may be performed in search of
undesired, inconsistent and incomplete dynamic behavior 
of the system.
These schemata may also form the basis for a formal 
analysis of interactions, which however we do not address 
in this context.
Walkthroughs of interaction schemata may be aimed at 
detecting relation chains containing loops, because loops 
indicate a more complex kind of interaction, and may
point to a possible synchronization problem (such as a
deadlock). It is possible, in this way, to point out some 
potential synchronization problems  in a sequence of
actions.

Let us consider, for instance, the example of section 4.2. In 
this case we detect the relation chain: (A, notify, B, UC3), 
(B, send, C, UC6), (C, send, B, UC8), presenting a loop. If
carefully walk through this chain, and we represent this 
interactions sequence on a time scale (see figure 4), it is 
possible to understand that some potential synchronization 
problems may occur. 

Figure 4: Interactions sequence

In fact, if the Approver B1 sends the changed request to 
the Requestor C1 and, before that C1 tells B1 that this 
change is refused, Authorizer A1 changes the
authorization to B1 and makes B2 the Approver of C1, 
then who should manage C1’s refusal?
In this case, it is possible to detect an inconsistency in the 
requirements due to an incomplete specification of the 
requirements because the notification of the changed
Approver is not sent also to the associated  Requestors.
This kind of problems, that are hidden if we consider only 
the Use Cases -based requirements document, may be
easily detected by using the relations chains.

Another possibility of exploiting this information is to 
point out those pairs of actors that have an higher number 
of  interactions than the others. The pairs that, in the case
study, have the highest number of different interactions are 
Approver-Requestor (5 interactions), Authorizer-Approver
(4 interactions) and Buyer-Requestor (3 interactions). The 
indication that can be derived from these data is that the 
interactions between these actors are at the core of the 
functionality of the system, and therefore should be
analysed in more detail in order to point at possible
problems. Also, this information can give an indication to 
which parts of the system should be stressed at testing
time.
The semantic information that can be extracted from the 
derived relations and graphs can help the analysis of

Authorizer A1 notifies Approver B1 that he shall 
approve the Requestor C1’s requests [UC3]

B1 sends C1 the changed request [UC6]

B1 decides to change a C1’s request [UC6]

A1 notifies B1 that he shall not approve the 
C1’s requests anymore [UC3]

C1 sends B1 (he doesn’t know that B1 is no more 
his Approver) the request change’s refusal [UC8]

Problem:
Who has to manage the C1’s refusal?

t3

 t2

t1

t4

t5

Time scale



71

correctness and completeness of the requirements by
detecting some gaps in the specification of Use Cases.
In fact, the graphs defined above (and in particular the 
chief graph) allow some interesting considerations to be 
made. The chief relation is not to be intended as
determining a hierarchy in terms of the importance of the 
role played by the actors. This relation and the information
derivable from the graph is a semantic information that 
allows to enlighten the influence of an actor on the others. 
In particular, if a node A of the chief graph is connected 
with the node B by an arc (A, B), then it can be argued that 
the behaviour of B doesn’t influence that of A. This kind 
of semantic information about the actors, that cannot be 
directly derived from the set of Use Cases, can play a 
relevant role for the analysis. In particular, it is possible to 
easily detect lacks in the relational structure of the
requirements.
In the example shown above, the relation F =>> D occurs. 
This occurrence enlightens a gap in the specifications 
because the buyer should have the capability of having a 
relation with the receiver (for instance, to ask the status of 
an on-going acquisition).

The relational approach can be oriented to achieve a
guidance for systematic construction of the Use Case
requirements documents. In fact, building the relations 
graphs in parallel with the definition of the Use Cases 
impels a continuing series of walkthroughs to check the 
part of the relations graph completed so far and examine 
how remaining relations should be added to the graphs 
themselves.

We wish, in the end to point at another application of the 
relational approach, which spans outside the context of 
Use Cases. A concept that has gained importance in the 
last years, especially in the telecommunication field, is the 
concept of feature. A feature is a capability of a system 
which provides value to the users, but is conceived as 
separate from the other features provided by a system to its 
users. However, at the system level, features can interact 
in a complex manner (a problem often referred as “Feature 
interaction”), so they cannot be treated as separate in the 
development of the system, and especially in the
requirements document. A feature may even prevents
other system activities: for instance, in a mobile handset 
user interface the “keyguard” feature prevents almost all 
other user-originated activities (but not incoming call
handling).
The description of a feature by Use Cases can be trivial (in 
the keyguard example the scenario might be composed 
simply of the “set the keyguard on” activity) and the Use 
Cases may be not able to represent how the system
behaviour is affected by a feature. 
The knowledge of the influence of the features on the UCs 
can be important mainly for the testing of the system 

because the Use Cases are not enough for representing the 
consequences of the features on the functionalities they 
describe.
For this reason the relational approach to the Use Case 
analysis can be of interest to identify those Use Cases 
affected by a feature.
For example the Use Cases affected by the keyguard
feature can be detected because they have in their scenario
a sentence like “User digit a key”. These UC are
influenced in case of the keyguard is set on.

6. Conclusions and Future works

In this paper we presented an approach to the analysis of 
Use Case requirements documents based on the relations 
between the actors. Starting from the simple relation 
between two actors derivable from a scenario sentence, by 
means of NL parsing tools, some more complex, derived 
relations have been defined. These relations are able to 
provide semantic information on the content of a
requirements document, supporting the completeness and 
consistency analysis. The semantic information on the Use 
Case requirements documents that can be captured with 
this approach is only partial, w.r.t. the semantic of the
whole requirements. Anyway, this information is able to 
provide a concrete support for the analysis. The use of the 
semantic information derivable with the relation-based
approach has been discussed in this paper. In particular, 
the knowledge of the functional relations between actors 
expressed by the Use Cases allows to perform
walkthroughs in the relation core to detect possible gaps in 
terms of consistency and completeness. Moreover, a
guidance for a systematic construction of the Use Cases 
requirements document can be obtained by the parallel 
development of graphs and schemata representing the
relations.
A related work to ours is that reported in [19], in which 
more sophisticated NL techniques are used to extract 
concept lattices out of Use Cases, which offer a richer 
information to the analysis. Our approach use simpler, low 
cost NL techniques to extract useful information: it would 
be interesting to see whether the benefits obtained by 
heavier NL techniques balance their higher costs.
The relation-based approach to the analysis of Use Cases 
is a promising research direction because it can be used as 
a mean to bridge the gap between the use of the informal 
NL descriptions typical of requirements documents, and 
the more formal artefacts typical of later stages of the
development process.  In particular, the study of the
relations between actors, though starting from a light 
formalism as the Use Cases are, can provide enough
information to move towards the application of formal 
methods with the support of automatic tools and in a user 
friendly way. We plan to investigate at this regard the



72

annotation of the relation graph with pre-conditions and 
post-condition in order to perform simulations of  the 
system and perform a more refined analysis.
Another subject that we are investigating is the extraction 
of test cases from Use Case scenarios. Also in this case, 
extracting information from the textual descriptions in the 
form of relations between actors helps in the definition of 
test cases covering the most intricate interaction schemes.

Acknowledgements

Part of the research work described in this paper was 
performed under the Eureka ? ?2023 Programme, ITEA 
(ip00004, CAFÉ). We wish to acknowledge the work of 
Carlo Becheri on the Relations Manager component of the 
MAIGRET architecture.

7. References

[1]  T. A. Alspaugh, A. I. Antòn, Scenario Networks: A Case 
Study of the Enhanced Messaging System, REFSQ'01,
Interlaken, Switzerland, June 2001.

[2] V. Ambriola, V. Gervasi, Processing Natural Language
Requirements, 12th IEEE Conf. On Automated Software 
Engineering (ASE'97), IEEE Computer Society Press, Nov. 
1997.

[3] C. Ben Achour, M. Tawbi, C. Souveyet, Bridging the Gap 
between Users and Requirements Engineering: the Scenario-
based Approach, International Journal of Computer Systems 
Science & Engineering, 14(6), 1999 (CREWS Report Series 
99-07).

[4 ] Cmap tool on-line: see http://www.yana.net/cmap/
[5] A. Cockburn, Writing Effective Use Cases, Addison-Wesley,

2000
[6] A. Cockburn, Structuring Use Cases with Goals, Journal of 

Object-Oriented Programming, Sep-Oct 1997 (part I) and 
Nov-Dec 1997 (part II) 

[7] A. H. Dutoit, B. Peach, Developing Guidance and Tool 
Support for Rationale-based Use Case Specification,
REFSQ'01, Interlaken, Switzerland, June 2001.

[8] F.Fabbrini, M.Fusani, S.Gnesi, G.Lami "The Linguistic
Approach to the Natural Language Requirements Quality: 
Benefits of the use of an Automatic Tool", 26th Annual IEEE 
Computer Society - NASA Goddard Space Flight Center 
Software Engineering Workshop, Greenbelt, MA, USA,
November 27-29 2001.

[9] F.Fabbrini, M.Fusani, S.Gnesi, G.Lami "Quality Evaluation 
of Software Requirement Specifications", Proc. of Software 
& Internet Quality Week 2000 Conference,  San Francisco, 
CA May 31-June 2 2000, Session 8A2, pp.1-18.

[10] A.Fantechi, S.Gnesi, G.Lami, A.Maccari "Linguistic
Techniques for Use Cases Analysis" Proceedings of the IEEE 
Joint International Requirements Engineering Conference -
RE02. Essen, Germany, September 9 -13 2002. 

[11] A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. 
Vanocchi, P. Moreschini, "Assisting requirement
formalization by means of natural language translation", 

Formal Methods in System Design, vol 4, n.3, pp. 243-263,
Kluwer Academic Publishers, 1994.

[12] N.E.Fuchs, R.Schwitter, Specifying Logic Programs in 
Controlled Natural Language, Workshop on Computational 
Logic for Natural Language Processing, Edinburgh, April 3-
5, 1995.

[13] V. Gervasi and B. Nuseibeh,  Lightweight validation of 
natural language requirements. Software: Practice &
Experience, Feb. 2002

[14] E. Kamsties, B. Peach,  Taming Ambiguity in Natural 
Language Requirements, ICSSEA 2000, Paris, December 
2000.

[15] B.Macias, S.G. Pulman. Natural Language Processing for 
Requirement Specifications. In Redmill and Anderson,
Safety Critical Systems, pages 57-89. Chapman and Hall, 
1993.

[16] L. Mich, R. Garigliano, The NL-OOPS project: OO
modelling using the NLPS LOLITA, NLDB99.

[17] J. Natt och Dag, B. Regnell et al., Evaluating Automated 
Support for Requirements Similarity Analysis in Market-
Driven Development, REFSQ01

[18] B. A. Nuseibeh and S. M. Easterbrook, Requirements
Engineering: A Roadmap, In A. C. W. Finkelstein (ed) "The 
Future of Software Engineering". (Companion volume to the 
proceedings of the 22nd International Conference on
Software Engineering, ICSE'00). IEEE Computer Society 
Press.

[19] D. Richards, K. Boettger, and O. Aguilera, A Controlled 
Language to Assist Conversion of Use Case Descriptions into 
Concept Lattices, LNAI 2557

[20]C. Rolland, C. Proix, A Natural Language Approach for 
Requirements Engineering. AISE'92,  LNCS 593, Springer-
Verlag, 1992.

[21] SyTwo/Cmap on-line. See:
http://www.yana.net/SyTwo/Cmap/index.html

[22] W. M. Wilson, L. H. Rosenberg, L. E. Hyatt, Automated 
Analysis of Requirement Specifications, ICSE 1997, IEEE 
Computer Society Press.

[23] D. Zowghi, V. Gervasi, A. McRae, Using Default
Reasoning to Discover Inconsistencies in Natural Language 
Requirements, Proc. of the 8th Asia-Pacific Software
Engineering Conference, Dec. 2001.

[24] http://members.aol.com/acockburn/papers/prts_req.htm

Appendix 1
UC1:
Goal: Requestor buys something through the system
Primary Actor: Requestor
Scenario :
- Requestor: initiate a request 
- Approver: check money in the budget, check price of 

goods, complete request for submission
- Buyer: check contents of storage, find best vendor for 

goods
- Authorizer: validate Approver's signature 
- Buyer: complete request for ordering, initiate PO with 

Vendor
- Vendor: deliver goods to Receiving, get receipt for 

delivery (out of scope of system under design)



73

- Receiver: register delivery, send goods to Requestor
- Requestor: mark request delivered
UC2:
Goal: Requestor, manager or buyer wants to see the state 

of the system
Primary Actor: Requestor or manager or Buyer or

Receiver
Scenario :
- Reader asks to see any one or any multiple requests 

sorted by any imaginable criteria. 
- System: show purchases
- Readers asks to get report printed
UC3:
Goal: Change who can approve purchases, what purchase 

limits they have
Primary Actor: Authorizer
Scenario :
- Authorizer notify the current Approver the changes 

decided
- Authorizer notify the new Approver the changes

decided
UC4:
Goal: Add, delete, change name, address, phone number 

of vendors
Primary Actor: Buyer
Scenario : -
UC5:
Goal: Create a request in the system
Primary Actor: Requestor
Scenario :
- Requestor asks to initiate a request
- Requestor fills in the request form
- Requestor sends the request to the Approver
UC6:
Goal: Change any part of a request
Primary Actor: Approver
Scenario :
- Approver changes the request
- Approver sends the changed request to the requestor
UC7:
Goal: Accept changed request
Primary Actor: Requestor
Scenario :
- Requestor send to the Approver the OK on the changed 

request
UC8:
Goal: Refuse changed request
Primary Actor: Requestor
Scenario :
- Requestor send to the Approver the cancellation of the 

request
UC9:
Goal: Cause processing on a request to stop
Primary Actor: Approver, Authorizer, Buyer
Scenario:

- Actor cancels the request
- Actor send to the Requestor the confirmation of

cancelled request
UC10:
Goal: Finalize a request as delivered OK, no more work 

need be done on it
Primary Actor: Approver
Scenario : -
UC11:
Goal: Initiate process to return goods, keep from paying 

for them
Primary Actor: Buyer
Scenario : -
UC12:
Goal: Complete approval process for a request
Primary Actor: Approver
Scenario :
- Complete the forms for request
- Send to the Authorizer the request approval
UC13:
Goal: Complete all parts of request and initiate POs
Primary Actor: Buyer
Scenario : -
UC14:
Goal: From one or more Requests, generate PO to a single 

vendor
Primary Actor: Buyer
Scenario :
- Buyer generates the Po
- Buyer send the PO to the Vendor
UC15:
Goal: Notify Buyer that a delivery did not arrive on time
Primary Actor: Receiver
Scenario :
- Receiver verifies that the due date is past without

receiving the delivery
- Receiver send the Buyer notification that a delivery did 

not arrive on time
UC16:
Goal: Establish that the request approver really has the

needed signature authority
Primary Actor: Authorizer
Scenario :
- Authorizer validate approver’s signature
- Authorizer send to the Buyer authorization to buy
UC17:
Goal: Mark actual delivery against one or more POs
Primary Actor: Receiver
Scenario :
- Receiver register delivery 
- Receiver send notification of delivered request to the 

Approver



74



75

Requirements Engineering for Data Warehousing 

Mohamed Frendi, Camille Salinesi 
Centre de Recherche en Informatique 

Université de Paris 1, Panthéon Sorbonne 
90, rue de Tolbiac, 75013 Paris, France 

mohamed.frendi@malix.univ-paris1.fr, camille@univ-paris1.fr 

Abstract
Data Warehouses are used in multiple domains such as 
management and business process performance 
evaluation, strategic decision making and business 
planning, or even to support decisions made in business 
processes. The main purpose of a Data Warehouse is to 
support decision making based on the analysis of 
heterogeneous and distributed information. This paper 
reviews some of the approaches used in practice to 
develop Data Warehouses. Based on a structured 
analysis, we demonstrate the existence of several 
families of approaches and that their main limitations 
relates to the lack of guidance of requirements 
engineering activities. The proposal made is to adapt 
traditional requirements engineering techniques in the 
specific context of developing Data Warehouses.

1. Introduction

Decision-making requires large quantities of data. Since 
these data are scattered in and across organizations, it is 
necessary to gather and integrate them in order to apply 
complex requests and lay them out in a consistent way. 
Bill Inmon [Inmo96] defines a Data Warehouse (DW) 
as a “collection of integrated, non volatile, subject-
oriented databases designed to support the decision 
support system where each unit of data is relevant to 
some moment in time. It contains atomic data and 
lightly summarized data”. This definition underlines 
several differences with operational Information 
Systems (IS): 
• DW are subject-oriented. Indeed, they focus on the 
evolution of high-level business entities (such as 
employees or financial forecast) in contrast to 
operational ISs that support business processes which 
make operational data evolve (e.g. employee 
registration or rolling up financial accounts). 
• DW are integrated. This means that data are stored in 
a single and consistent format (e.g. using naming 
conventions, domain constraints, unified physical 
attributes and measurements) even though they 
originate from different sources in which they have 
different formats. On the contrary, ISs can be composed 

of different data repositories (such as relational 
databases, object oriented databases, files etc), between 
which exchange interfaces are usually set up.  
• Data managed in DW are time variant. This means 
that every data is systematically associated to a time 
reference (e.g. semester, fiscal year, pay period). This is 
obviously not the case in IS where the association of 
time information to operational data depends on the 
need. 
• Data in DW are non-volatile. This means that data, 
once in the DW, do not change (they are historised). 
Again, data can also be historised in IS. This is however 
not systematic and depends on the requirements. 
Reviews of DW development techniques classify a 
priori those into families, and teach us very little about 
their drawbacks and how they could be enhanced other 
than by better project management [List02]. A literature 
review was thus undertaken to analyze DW 
development techniques in a structured and rationale 
way. A framework was built as formerly done in 
[Rol98b] [Rol98c]. Each of the analyzed DW 
development technique was positioned in the 
framework. This analysis helped uncovering additional 
families of approaches, and emphasized the general lack 
of specific guidance for the requirements elicitation 
process, requirements analysis process and system 
validation process. In addition to this structured 
literature review, this paper proposes to adapt 
traditional RE techniques and integrate them with 
existing DW development approaches. The result is a 
first-cut goal-oriented process model that provides a 
rich picture of how to deal with requirements in the 
context of a DW project. This process model is of 
course meant to be evolutionary and therefore, it should 
be experimented. Our plan is to enrich it by : (i.) 
introducing new strategies to achieve the goals 
identified, (ii.) refining and further adapting the 
techniques already selected, and (iii.) exploring the 
transition from the requirements view to the DW 
conceptual model view.  
The remainder of this paper is structured as follows: 
section 2 presents our framework; in section 3, some of 
the existing DW development approaches are discussed 
in the light of this framework; section 4 outlines our 
approach and shows how it proposes to combine the 



76

advantages of different families of approaches. This 
approach integrates RE activities to solve the main 
issues identified with the literature review. 

2. Framework for analysing existing DW 
development approaches 

The data needed by decision makers to found their 
decisions are often not easily accessible through the 
conventional IS [Gree01]. On the contrary, DW propose 
features that allow to : 
• extract data from scattered sources, such as internal 
or external databases, enterprise resource planning, 
other DW, etc. 
• integrate them in a central repository that 
differentiates the reconciled data from the operational 
data stores (ODS) in which data are stored haphazardly, 
• maintain them through time, 
• customize and aggregate them into data marts that 
provide synthesised views of the DW according to the 
decision makers interests. 
These features are shown in figure 1. Besides, the figure 
shows that not only decision makers can use data marts 
to focus on some aspects of the DW, but also they can 
directly access the entire DW through complex queries. 
This usage has two main purposes, which allows to 
differentiate between two main categories of decision 
makers : those having operational decisions, and those 
with strategic decisions [List02]. Operational decisions 
are those taken in the flow of business process to define 
how to proceed. On the other hand, strategic decisions 
have an influence on organisation and they can result in 
changes on the structure of business processes.  

D
ata

sources

Data Warehouse
schema

Reconciled Data

O.D.S.

Aggregation & Customization

Extraction & Integration

User Schema

Derived Data

Source Schema
Operationnal

Data

Decision
Maker

ERP RDB DW

D
ata

M
arts

D
ata

W
arehouse

U
se

s

Uses

C
hanges

Figure 1: A general view of the architecture of DW 

To develop a DW one has to define the structure of its 
repository and define the operations that allow to feed it 
in with data as well as to exploit it. A number of 
approaches can be found in the literature ([Gol98], 
[Inmo96], [Kim96], [Kim2002], [Moo2000], [Poe96], 

[Sap98]) and are used in practice ([Inmo96], [Kim96], 
[Poe96]). 
Based on our experience of literature surveys on 
scenario-based RE approaches [Rol98b] and process 
engineering approaches [Rol98c], we hypothesised that 
four perspectives could be used to characterize DW 
development approaches: (i.) the system perspective, 
(ii.) the subject perspective, (iii.) the usage perspective, 
and (iv.) the development perspective.  
We developed a framework that views DW 
development techniques according to these four 
perspectives. As figure 2 shows, each perspective offers 
itself a number of options. Choosing among the options 
offered within each perspectives allows to characterize 
an approach an to compare it with others. 

Data Warehouse
Development Technique

Logical Model

Development
technique

Analysis directionAnalysis approach

- Data driven
- Process driven

- E/R Model
- Dimensional Model

- Top-Down Approach
- Bottom-Up approach

- Tables
- Data Cubes

Figure 2: Framework for DW approaches 

The remainder of this section is divided into four 
subsections. Each of those is devoted to the review of 
the existing DW development techniques within one of 
the four perspectives. 

2.1 The System perspective: logical models 

This perspectives proposes to categorise DW 
development approaches according to the logical 
models they use to implement DWs. Two options are 
available in this perspective: tabular models and 
dimensional models. 
Tabular models are inspired from the relational model. 
The idea is to use universal tables (denormalized 
tables); this is particularly useful to avoid joints when 
accessing data. 
The Dimensional models introduces the concept of Data 
Cube. A Data Cube is a multidimensional hierarchy 
structure. It generally contains summarized data as 
opposed to tabular models which can also contain 
detailed data (figure 3). Values higher in the hierarchy 
are more aggregated than those lower in the hierarchy. 
This hierarchical organisation is useful to let the user 
easily navigate between high and low precision views 
of the same aggregated data. 



77

Sedan
4x4

City

Time

Car

2059

…
Truck

.

.

Montpellier

Paris
.
.

Jan  Feb  Mar  Apr ………….

Sedan
4x4

City

Time

Car

2059

…
Truck

.

.

Montpellier

Paris
.
.

Jan  Feb  Mar  Apr ………….

Figure 3: An example of Data Cube

In practice, most of the DWs schema are designed using 
the tabular model ([Gar2000], [Informix2000] 
[Craig99]). At the extreme, some approaches reuse the 
models used at the operational level, and propose 
universal tables to optimise queries. This approach has 
the advantage that it allows to reuse the existing 
operational data model. Although de-normalisation 
introduces redundancies, there is no maintenance issue 
in such tabular DW because data are never updated. The 
main drawback of this model is that it does not easily 
support the integration of external sources. 
This issue is solved by the dimensional model [Kim96]. 
Indeed, dimension tables can be used to represent the 
data available in different sources. Kimball argues that 
besides, the design of DW schema according to the 
dimensional model is easier. This seems to be reflected 
in the choice of the dimensional model option in most 
of the recent approaches ([Kim96], [Bal98], [Hai95], 
[Jar2002], [Moo2000], [Sap98], [Win96],…). 

2.2 The Subject perspective: Analysis direction 

Two analysis directions can be taken while developing 
a DW : the top-down direction, and the bottom up 
direction.  
In the Top-Down direction, the focus is first on the 
information needed to make decisions prior to the 
information available at the operational level. This 
approach is inspired from the Waterfall approach 
[Roy88] used in the CASE environments. The 
advantage of this approach is that it allows to limit the 
scope of the study as well as the system boundary. 
Experience has shown that this approach has several 
drawbacks [Nag93] such as: duration of the project, 
high cost, estimation of ROI difficult before the entire  
realization of the project. 
Approaches that take the Bottom-Up direction are 
recommended for handling legacy systems. They 
consist in building Data Marts (DM: these are small 
DWs) first, which is faster than building a whole DW 
([Inmo96], [Gol98], [Kim96], [Moo2000] approaches 
can be used to design DMs). Once DMs are operational, 
they can be federated into an enterprise wide DW. The 
advantages of Bottom-Up approach are its speed and 

easiness of use. Besides, the ROI appears immediately 
with the DMs. The development of new DMs is an easy 
way to make the whole system evolve. However, the 
uncontrolled proliferation of DMs can cause integration 
problems for building the enterprise DW. Another 
drawback is the difficulty of exploiting in each DM the 
data of the other DMs as long as the enterprise DW is 
not fully developed. 

2.3 The Usage perspective: Analysis approaches 

The purpose of the Usage perspective is to categorize 
the DW development techniques according to the 
approach used to analyse the system. This perspective is 
divided into two options: process driven and data 
driven. 

(a) Process driven approaches are interested in the 
business processes by which DWs are populated or used 
as well as the decision processes during which DWs are 
exploited. The analysis of these processes can be driven 
by the requirements of each individual activity that they 
contain or driven by improvement goals. 

User requirement oriented approaches generally 
propose guidelines for conducting user interviews. In 
these approaches, the DW is not designed to support 
small-scale query requirements but the decisions made 
in whole processes [Poe96]. 

Goal oriented approaches assume that the main 
issue of DW development is to decide which process to 
improve and what improvement should be made. 
Identifying the improvement goals helps determining 
the data needed to achieve the process improvement 
([kim96, kim98], [Boe2000]). 

(b) Data driven approaches consider first the sources 
of data upon which decisions are made. The priority is 
therefore to populate the DW. It is only when queries 
are submitted to the DW that data reconciliation and 
improvement of the DW schema are achieved. For 
example, Golfarelli and al. [Gol98] propose a 
methodology to semi-automatically build a dimensional 
data warehouse model from E/R models of legacy 
operational databases. These approaches are also often 
based on the analysis of the organization data model 
(e.g. [Inmo96]). However, in such approaches the needs 
of DW users are only taken into account after the DW is 
developed, at exploitation and continuous improvement 
time. The risk in inadequacy of DW developed using 
the data driven approaches is thus very high. 

2.4 The Development perspective: Development 
techniques 

This perspective considers the development technique 
used to design the DW schema. Nowadays, there are 
two development techniques used, the E/R model and 
the Dimensional model. 

In the E/R model based approaches, DWs schemas are 
usually composed of flat entities (i.e. denormalized). 
The advantage is that the E/R formalism is well known 



78

by the designers. Extensions to E/R formalism have 
been proposed for better adequacy to the specific issues 
of DW development [Sap98]. 

The Dimensional model was introduced by Kimball 
[Kim96]. It applies a pattern in which there is a large 
table called "facts table" that dominates the others. This 
central table gathers operational data of the 
organization. It is combined with a number of 
"dimensions tables" that provide details on the 
operational data of the facts table. This formalism has 
the advantage to be clear and to offer an easy way to 
represent the measurement factors of the organization. 
Different patterns are proposed in the literature : star 
schema, snow flake model, constellation model, etc. 

As shown in figure 4, in the Star schema dimensional 
model, the facts table is in the center and is connected 
to other dimensions by [1..n] relationships. This 
structure has the advantage of limiting the number of 
joints in queries. Several studies have also proven that 
the star schema dimensional model is the model that 
presents the best compromise in term of complexity and 
information redundancy. 

Dimension Table 3

Dimension Table 4

Fact Table

Dimension Table 2

Dimension Table 1

Figure 4: Generic structure of Star schema [Moo2000] 

Similarly, in the Snowflake schema, there is a central 
fact table with normalised dimensions around it. 
Therefore, as shown in figure 5, each dimension is split 
into sub-dimensions. 

Dimension Table 3

Dimension Table 2

Dimension Table 1

Dimension Table 4

Fact Table

Sub-dimension

Sub-dimension

Sub-dimensionSub-dimension

Sub-dimensionSub-dimension

Sub-dimension

Sub-dimension

Figure 5: Generic structure of Snowflake schema

3. Discussion on existing DW development 
approaches 

Based on the Framework presented in the former 
section, we reviewed 9 approaches found in the 

literature. Table 1 shows the characteristics of each 
approach by affecting yes/no values (ticks are used to 
characterise a yes) to each option available in the four 
perspectives provided by the framework. 

A
pp

ro
ac

he
 

In
m

o9
6 

C
ab

i9
8 

G
ol

98

K
im

98

B
oe

20
00

 

Sa
p9

8

W
es

t2
00

1 

Perspective Option        
Table ➼ * *  * * * System 
Data Cube ➼ ➼ ➼ ➼ ➼ ➼ *
Process driven/Goal 
oriented 

   ➼ ➼

Process driven / User 
requirements oriented 

      ➼

Usage 

Data driven ➼ ➼ ➼ ➼

Top-Down    ➼ ➼  * Subject 
Bottom-Up ➼ ➼ ➼ ➼ ➼

E/R ➼      * Development 
Dimensional * ➼ ➼ ➼ ➼ ➼ *

Table 1: Classification of some approaches

For example, in the data driven approach proposed by 
Inmon [Inmo96], the company change goals nor user 
requirements are neither not taken into account. There is 
therefore no information on how to ensure the adequacy 
of the DW schema to the usage of the DW. User needs 
are integrated only in the exploitation and maintenance 
phase. This may, of course, force designers to re-design 
large parts or even the complete DW. Such approaches 
are thus very likely to become expensive through 
requirements evolution. 
Westerman’s approach [West2001] is driven by DW 
user requirements. It proposes to analyse business 
processes through the decisions made in these 
processes. Then, these processes are prioritized and the 
most important of them are defined in terms of data 
structure needed to make decisions. The result is a 
number of services expected from the DW to support 
these decisions. The assumption is that the actual data 
will be available at the operational level to feed-in the 
structures. This is of course a strong assumption, and 
we believe that legacy data sources should be taken into 
account earlier in the process to avoid this risk. 
Poe [Poe96] proposes a catalogue of high level 
guidelines for conducting user interviews in order to 
collect end user requirements. She recommends 
interviewing different user groups in order to get a 
complete understanding of the business. This approach 
is similar to Westerman’s approach in that the 
guidelines that it proposed help understanding the 
requirements of the operational actors of business 
process.  
On the contrary, Kimball’s approach [Kim96] is 
focused on organizational improvement goals and 
ignores data constraints and operational users 
requirements. The idea is to grasp the goals of strategic 
decision makers that have to decide upon when/how to 
improve business processes. The object of the analysis 
is therefore the improvement intentions prior to the 
improved business processes. The top-down analysis 



79

ends up with the identification of business objects 
managed in the changed business processes; these are 
modelled using pre-defined patterns of the dimensional 
model. Böhnlein and Ulbrich-vom Ende [Boe2000] 
present an approach that is based on the SOM 
(Semantic Object Model) process modeling technique 
in order to derive the initial data warehouse structure. 
The first stage of the derivation process determines 
goals and services the company provides to its 
customers. Then the business process is analyzed by 
applying the SOM interaction schema that highlights 
the customers and their transactions with the process 
studied. In a third step sequences of transactions are 
transformed into sequences of existing dependencies 
that refer to information systems. The last step identifies 
measures and dimensions. 
Golfarelli’s and Moody’s approaches [Gol98] 
[Moo2000] are both data driven. The guidelines 
provided help analysing the data models of operational 
data sources and to transform them into dimensional 
models of the DW. These are bottom-up approaches in 
which both improvement goals and user requirements 
are ignored. 

To sum up, three major observations can be drawn from 
our framework-based review of DW development 
approaches:  
(i.) two main families of approaches can be 
distinguished : (a) top-down process-driven approaches 
and (b) data-driven bottom-up approaches; 
(ii.) the majority of approaches are data-driven. Indeed, 
it is considered that while approaches in the first family 
are more appropriate to build enterprise-wide DW, 
those from the bottom-up data-driven family are easier 
to use and generate initial results faster; 
(iii.) very few approaches are requirements-driven; this 
is mainly due to the time constraints imposed to DW 
projects and general belief that requirements-driven 
approaches are time consuming. 
We observed in this review of (some of the) existing 
approaches that most of the works done in the DW 
development domain deal with how data should be 
structured, stored and managed in DWs. Only few 
approaches consider the services provided by DWs. 
Besides, we believe that these approaches have a 
number of drawbacks in common : 
• Their usage is focused on one option at the exclusion 
of the other options available. All the approaches are 
either goal-oriented, or user requirements driven or data 
driven. None proposes to combine change goals to user 
requirements analysis or data analysis. 
• These approaches are not or partially automated. 
There is for example very few detailed guidelines on 
how to transform DW requirements into a conceptual 
DW model, or how to elicit DW requirements through 
user requirements analysis or goal analysis. 
• These approaches are based on the expertise of DW 
designers; none of them proposes to capitalise 
knowledge from one project to another.  

This review of existing approaches is not complete in 
the sense that:  
• not all existing approaches have been classified yet 
• the framework on which it is based is still shallow 
and can be considerably enriched to refine our 
understanding of the common aspects of and differences 
between DW development approaches. 
However, we used the aforementioned observations to 
lay out the process model of our approach. 

4. Requirements engineering process for 
DW; proposal 

As shown in figure 6, our position is that of a DW 
development approach that takes into account both 
business process requirements, requirements from 
strategic decision processes, and operational data 
models of existing systems. Besides, we propose to 
combine DW requirements to DW models. 
On one hand, DW requirements can be elicited using 
both business process requirements (i.e. by analysing 
the usage of the future DW in the decisions made in To-
Be business processes) and strategic decision processes 
and improvement goals (i.e. by analysing the usage of 
the DW to make strategic decisions about change). 
On the other hand DW models are produced using a 
combination of DW requirements and As-Is data 
models. Therefore, as in [Bruck01], while the DW 
requirements are elicited in a top down fashion, the 
operational data models are drawn in a bottom up 
fashion to produce the DW data models.  
Once produced, DW data models can also be used to 
elicit new requirements. This can be based on the 
exploitation of the similarities between requirements for 
DW systems to be used within the same domains, as 
well as on the possibility to transpose patterns of DW 
design solutions from one domain to the other . 

Data Warehouse
model

« To Be »« As Is »
Strategic decision

process and change
goals

Business
process

requirements

Data Warehouse
requirements

Data model

Figure 6: A product view of  the position taken on DW 
development methods

The proposed process is founded on two main goals : (i) 
elicit requirements, and (ii) design DW models.  



80

The main usage of DW is decision making. Therefore, 
we believe that decision analysis is an important way of  
guiding requirements elicitation in the DW context. We 
believe that similar techniques could be used to analyse 
the decisions made in business processes and the 
decisions made in strategic decisional processes. The 
models used can for instance be adapted from the 
NATURE process meta model (that defines a process as 
a set of decisions to be taken in the context of different 
situations and goals) [Grosz97], or from the MAP 
process meta model (according to which process models 
should integrate the decisions of which goal to achieve 
as well as how to achieve it) [Benj99]. Further 
adaptations for a better adequacy to the needs of DW 
usage processes can also be inspired from decision 
theories such as [Roy85], [Roy93], [Ash95]. 
In addition to the decision analysis strategy, we propose 
to guide requirements elicitation with a reuse-based 
strategy and an improvement strategy. Domain-based 
reuse strategies are already proposed in packaged 
solutions e.g. with ERPs. The idea is to provide with the 
operational systems a pre-defined DW that can be 
adapted. New requirements can be elicited in reference 
to the existing solution supplementary however 
guidance is needed to elicit those requirements and to 
concretise them into the adapted DW.  
The idea behind the improvement strategy is that once 
developed, a DW should be validated. When it is found 
that the solution does not adequately support the 
decision-making processes then a new requirements 
analysis should be undertaken and changes made to the 
DW.  
Once the requirements are elicited, they can be used to 
design the DW model. This can be done: 
(i.) by matching them with existing data models of the 
operational data sources (after transforming them into 
an equivalent formalism). 
(ii.) by mapping them into a DW model using mapping 
rules. Contrary to the former strategy, such mapping 
rules must be independent of the data available in the 
operational data sources. 
(iii.)  by directly using the information available at the 
data-source level, and without taking requirements into 
account. This data driven bottom-up strategy is the one 
proposed by [Inmo96]. It is only during the 
improvement phase that requirements are elicited to 
make the DW system evolve. 

Start

Requirements
elicitation

Data Warehouse
model design

Data matching

Validation/
Improvement

Mapping

Decision
analysis

Business process decision
Strategic process decision

By
reuse

Domain based
Model pattern

Design
validation

Data driven/Bottom-Up

Stop

Product
exploitation

Figure 7: Process view of the position taken on DW 
development.

We have already developed parts of this approach. In 
particular, in [Fren2002] we proposed to use the 
requirements elicitation method L’Ecritoire to draw 
requirements in the form of business process goals. 
Guidance was proposed under the form of a semi-
automated rule that analyses the scenarios documenting 
goals and maps them into an E/R DW model. 
Additional guidance was given to translate this E/R 
model into a dimensional DW model using Moody’s 
approach [Moo2000]. 
The approach is far from being complete; it has to be 
improved, refined, and in-depth evaluation is needed. In 
particular, we would like to investigate its relevance to 
the issues found with DW development in the industry. 
Our first investigation showed us that: 
• our approach is far from complete; 
• it does not yet fully combine the advantages of the 
requirements-driven approach to those of the data-
driven approach; 
• it is time consuming; transitory E/R models are un-
necessary and the guidance could directly aim at 
dimensional models; there is also a risk of loss of 
information in the transition from E/R to dimensional 
models; 
• the goal-scenario approach used in L’Ecritoire is
efficient to elicit requirements, but could be enriched 
for better adequacy to the specific issues of decision 
making in strategic and business processes; the 
decisions and the information needed to make decisions 
could for instance be made more explicit; 
• this approach does not exploit the information 
provided by existing operational data-models. We 
believe that data sources could provide early in the 
process useful information on the availability of 
information to support decisions with the DW.  

5. Conclusion 
Data Warehouse development is not new. It started in 
the early of 80’ and all large organizations now have 
DWs to support their strategic and business decisions. 
In a recent study [Nag93] of DW development and use 
experiences, “managing the expectations of users and 
management” was quoted as one of the six “outstanding 
issues and challenges associated with data warehouse”.
Our goal in this paper was thus double : 
(i.) to improve our understanding of the existing DW 
development approaches , and  
(ii.) to lay out an innovative requirements-based DW 
development approach. 
Our review of DW development is structured according 
to a framework. This framework is composed of four 
perspectives on DW development, each perspective 
identifies a number of options that are used in the 
existing approaches. The use of the framework in our 
review allowed to identify two large families of 
approaches: process-driven top-down approaches and 
data-driven bottom-up approaches. Both families of 
approaches have advantages and raise specific issues; 
there is to our knowledge no approach that tries to solve 



81

these issues by combining the strategies used in each 
family. Of course, the framework has to be improved 
(by introducing more options in each view or by 
refining the existing options); more approaches should 
also be analysed for a more exhaustive review. 
One major issue that we met in all approaches is the 
lack of guidance of the requirements engineering part of 
the DW development process. Our position is to guide 
requirements analysis by combining the DW user point 
of view and the operational system point of view. The 
former stands in the top-down analysis of decisions 
made in strategic or business processes while the latter 
introduces bottom-up analysis of the operational data 
used in business processes.  
In the system perspective, we aim at an approach that is 
technology–independent: the DW data models should 
be usable to produce data cubes or tables indistinctively. 
This transition is however outside the scope of our 
proposal. 

6. Bibliography 

[Adam98] : C. Adamson, M. Venerable; Data Warehouse 
design solutions, Wiley 1998. 

[Ant97] : A. Anton; Goal identification and refinement in 
specification of software-based information systems. Thesis 
presented to academic faculty, Georgia Institute of 
Technology, June 1997 URL: 
www.csc.ncsu.edu/faculty/anton/pubs/thesis/thesis.html

[Ash95] : Robert H. Aston, Alison Hubbard Ashton; 
Judgment and Decision-Making Research in Accounting and 
Auditing; Cambridge University Press; 1995. 

[Bal98] : C. Ballard, D.Herreman, D. Schau, R. Bell, K. 
Eunsaeng, A. Valencic; Data Modeling Techniques for Data 
Warehousing. I.B.M.; February 1998. 

[Boe2000] : Boehnlein, M., Ulbrich vom Ende; A.: Business 
Process Oriented Development of Data Warehouse Structures. 
In: Proceedings of Data Warehousing 2000, Physica Verlag 
(2000). 

[Benj99] A. Benjamen, Une Approche Multi-démarches pour 
la modélisation des démarches méthodologiques, Phd Thesis, 
Université de Paris I, 1999. 

[Bruck01] R. Bruckner, B. List, J. Schiefer. Developing 
Requirements for Data Warehouse with Use Cases. In Proc. 
Of 7th Americas Conference on Information Systems. 2001. 

[Cabi98] : L. Cabibbo, R. Torlone; “A logical approach to 
multidimensional databases,” Proc. 6th EDBT 1998, LNCS 
1377, 183–197. 

[Ben99] : C. Ben Achour; Extraction des Besoins par analyse 
de scénarios textuels; Janvier 1999. 

[Craig99] : Robert S. Craig, Joseph A. Vivona, David 
Berkovitch; Microsoft Data Warehousing: Building 
Distributed Decision Support Systems; Wiley and Sons, 
March 1999. 

[Crew] : L’approche CREWS-L'Ecritoire http://crinfo.univ-
paris1.fr/CRINFO/CMB/HTML/Paris_chunk_index.html

[Dar91] : A. Dardenne, S. Fickas, A. Van Lamsweerde, 
"Goal-directed concept acquisition in requirements 
elicitation", Proc. 6th IEEE Workshop System Specification 
and Design, Como, Italy, 1991, 14-21. 

[Dar93] : Dardenne A., Van Laamsweerde A. and Fickas S., 
"Goal Directed Requirements Acquisition", Science of 
Computer Programming, 20(1-2), pp3-50, 1993). 

[Dow2001] : Dowling K., Schuff D., St Louis R., Star join 
schemas versus normalized relational schemas: Does it really 
make a difference to end-users?, Proceeding Americas conf. 
on Information systems 2001. 

[Fren2002] : Frendi M.; Requirements engineering for 
building Data Warehouses; Diplôme de DEA information, 
interaction, intelligence, Université Paris XI, Orsay, France; 
Septembre 2002. 

[Gao99] : Gao J., Requirements analysis concepts and 
principles, Ph.D. thesis, Jan 1999. 

[Gar2000] : Gary Dodge, Tim Gorman, W. H. Inmon; 
Essential Oracle8i Data Warehousing: Designing, Building, 
and Managing Oracle Data Warehouses, John Wiley & Sons, 
September 2000. 

[Gol98] : Golfarelli M., Maio D., Rizzi S., Conceptual design 
of Data warehouses from E/R Schemes. In: Proceedings of the 
31st HICSS, IEEE Press (1998). 

[Gom81] : Gomez F., Segami C., Delaune C., A system for 
semiautomatic generation of E/R models from natural 
language specifications, Data & Knowledge Engineering, Feb. 
1998. 

[Gree01] L. Greenfield. What Decision Support Tools are 
Used For. LGI Systems report. www.dwinfocenter.org. 2001. 

[Grosz97] : G. Grosz, C. Rolland, S. Schwer, C. Souveyet, V. 
Plihon, S. Si-said, C. Ben Achour, C. Gnaho; Modelling and 
Engineering the Requirements Engineering Process : An 
Overview of the NATURE Approach; Requirements 
Engineering Journal, (2), 1997, p. 115-131. 

[Hai95] : Haisten M., Designing a Data warehouse, InfoDB 
Vol. 9 Num.2; April 1995. 

[Informix2000] : Informix Guide to Designing Databases and 
Data Warehouses, Informix press, January 2000. 

[Inmo96] : Inmon W., Building the DW, Second edition, John 
Wiley and Sons, 1996. 

[Jar2002], M. Jarke, M. Lenzerini, Y. Vassiliou, P. 
Vassiliadis; Fundamentals of Data Warehouses, Springer 
september 2002. 

[Kim96] : Kimball R., The Data Warehouse toolkit, Wiley 
1996. 

[Kim97] : Kimball R., A dimensional modelling manifesto, 
DBMS, July 1997. 

[Kim98] : Kimball R., L. Reeves, M. Ross, W. Thornthwaite ; 
The Data warehouse lifecycle toolkit: Export methods for 
designing, developing, and deploying data warehouses, Wiley 
1998. 

[Kim2001] : Ralph Kimball, Richard Merz, Margy Ross; The 
Data Warehouse Toolkit: The Complete Guide to 
Dimensional Modeling, John Wiley & Sons, April 2002 

[List02] : B. List, R.M. Bruckner, K. Machaczek, J. Schiefer; 
A comparison of Data Warehouse Development 
methodologies. Case study of the process Warehouse. In Proc. 
Of DEXA’02, LNCS 2453, Springer Verlag. pp203-215. 
2002. 

[Liu2001] : Liu L., Yu E., From requirements to architectural 
design using goals and scenarios, micon 2001. 

[Mar] : Marsh V., Data warehouse case studies, InfoDB Vol. 
9 Num.3. 



82

[Moo2000]: Daniel L. Moody; From enterprise models to 
dimensional models: a methodology for data warehouse and 
data mart design; Proceedings of the international workshop 
on design and management of data warehouses 
(DMDW’2000), Stockholm, Sweden, June 2000 

[Nag93] : Nagraj A., Richards D., Winsberg P., White C., DW 
in practice, Info DB, Summary 1993 

[Opdhal98] A. L. Opdhal, K. Pohl, Workshop Summary 
REFSQ’98. Proceedeings of the Fourth International 
Workshop on Requirements Engineering: Foundations of 
Software Quality, REFSQ’98, Pisa, Italy Presses 
Universitaires de Namur, (eds, E. Dubois, A.L. Opdhal, K. 
Pohl), pp.1-11, 1998. 

[Poe96] : Poe, V.: Building a Data Warehouse for Decision 
Support. Prentice Hall (1996) 

[Potts94]), C. Potts, K. Takahashi, A. I. Antòn. Inquiry-based 
Requirements Analysis. IEEE Software, Vol.11, N°2, pp.21-
32, 1994. 

[Rod] : Rodero J.A., Toval J.A., Piattini M.G., The audit of 
the Data warehouse framework, Proceeding of the 
International Workshop on Design and Management of Data 
Warehouses (DMDW'99) Heidelberg, Germany, 14. - 15. 6. 
1999 

[Rol98a] : Rolland C., Souveyet C., Ben Achour C., Guiding 
goal modelling, Crews Report 98-27 

[Rol98b] : C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, 
A. Sutcliffe, N.A.M. Maiden, M. Jarke, P. Haumer, K. Pohl, 
Dubois, P. Heymans, "A Proposal for a Scenario 
Classification Framework". Requirements Engineering 
Journal, Vol; 3, No. 1, pp. 23-47, 1998. 

[Rol98c] C. Rolland; "A Comprehensive View of Process 
Engineering" in the Proceedings of the 10th International 
Conference CAISE'98, Lecture Notes in Computer Science 
1413, B. Pernici, C. Thanos (Eds), Springer, Pisa, Italy, June 
1998. 

[Rol99] : Rolland C., Ralyté J., Plihon V., Method 
Enhancement with scenario based techniques, CAISE 99, 14-
18, June 1999 

[Roy88] : Royce W.W. "Managing the development of Large 
Software systems"; IEEE 70, 1988 

[Roy85] : Roy B.; Méthodologie multicritère d'aide à la 
décision ; Economica ; 1985 

[Roy93] : Roy B., Bouissou D.; Aide multicritère à la 
décision ; Economica ; 1993 

[Sap98] : Sapie C., Blaschka M., Hölfing G., Dinter B., 
Extending the E/R model for the multidimensional paradigm. 
Springer Verlag 1998 

[Sk94a] : Sk Yu Eric, Mylopoulos J., "Understanding “Why” 
in Software Process, Modelling, Analysis, and Design". In 
Proc. of the 16th International Conference on Software 
Engineering _ ICSE'94, Sorrento (Italy), May 16-21, 1994. 
IEEE & ACM. 

[Sk94b] : Sk Yu Eric, Mylopoulos J., "From ER to AR 
modelling strategic Actor Relationships for Business Process 
Reengineering". In Proc. of the 13th International Conference 
on the Entity-Relationship Approach _ ER'94, Manchester 
(UK), December 13-16, 1994. 

[Sk94c] : Sk Yu Eric, Mylopoulos J., "Towards Modelling 
Strategic Actor Relationships for Information Systems 
Development- with Examples from Business Process 
Reengineering". Proc. of the 4th Workshop on Information 

Technologies and Systems (WITS'94), Vancouver, B. C., 
Canada, December 17-18, 1994. 

[Taw2001] : Tawbi M., CREWS l’Écritoire: un guidage 
outillé du processus d’ingénierie des besoins. Thèse de 
doctorat. Soutenue le 26.10.2001 à l’université Paris I. 

[Theo99] : Theodoratos D., T.Sellis, Designing Data 
warehouses, 20/06/1999 DWDW'99, Heidelberg, Germany 
14-15/06/1999 

[West2001] : Westerman, P.: Data Warehousing using the 
Wal-Mart Model, Morgan Kaufmann (2001) 

[Win96] : Winsberg P., Modelling the Data warehouses and 
Data marts, InfoDB Vol. 10 Num.3; June 1996 



83

Introduction and Application of a Lightweight Requirements Engineering 
Process Evaluation Method 

Tony Gorschek 
tony.gorschek@bth.se 

Mikael Svahnberg 
mikael.svahnberg@bth.se 

Kaarina Tejle 
kaarina.tejle@home.se 

Department of Software Engineering & Computer Science, 
Blekinge Institute of Technology, PO Box 520, S-372 25 Ronneby, Sweden 

Phone: +46 457 385000 

Abstract 

The lack of an adequate requirements specification 
is often blamed for the failure of many IT investments. 
Naturally, the requirements specification is the 
product of a requirements engineering process. 

Methods are required to evaluate the current 
requirements engineering process and identify where 
improvements are necessary making it possible to 
produce requirement specifications of high quality. 
Existing requirements engineering evaluation 
methods are often large, costly and time-consuming to 
use. Therefore we introduce a lightweight evaluation 
method, which we use to evaluate four industry 
projects. In this paper we outline the evaluation 
method, describe four industrial applications of the 
method and present an analysis of the findings. 

The results suggest that the proposed evaluation 
method is useful and the studied cases to a large 
extent have adequate requirements engineering 
processes although many important aspects are 
missing from their respective processes. 

1. Introduction 

According to certain sources the failure rate of IT 
investments is over 60% [1]. In addition problems 
introduced through the requirements engineering of a 
project accounts for something like 50% of the total 
debugging costs [2]. One of the major causes for this 
is said to be the lack of a complete and/or adequate 
requirements specification [2] [3] [4]. As the 
requirements specification is a direct result of the 
requirements engineering process it stands to reason 
that an inadequate specification is a result of a 
requirements engineering process with a low maturity 
level [5]. 

Although there exist several methods for assessing 
software development processes, (e.g. CMM [6] and 
ISO9000 [7]), few models focus on requirements 
engineering, and those that do to some extent (e.g. 
Sommerville & Sawyer [3] [8], CMMI [9] and SPICE 
[10]) are large and demand a fair amount of resources 

in order to be used. This is primarily due to the fact 
that they are exhaustive and often aimed at large scale 
evaluations of entire processes, e.g. the whole of a 
development process.  This may not be a problem for 
large business enterprises, but small and medium size 
enterprises (SME) often have a limited budget for 
process evaluation and improvement.  

Hence there is no simple and fast way to assess 
whether or not the requirements engineering processes 
in a company is inadequate today, or whether other 
causes are responsible for the aforementioned lack of 
a complete and adequate requirements specification. 

To address this we need a fast and cost effective 
way to study the status of a requirements engineering 
process. This initial investigation into the status of 
requirements engineering in a company need not 
necessarily be faultless or even exhaustive, instead it 
should be good enough to give an indication to 
whether or not a problem exists, and to some extent 
where the problem areas reside. For this purpose a 
process evaluation model is introduced, the 
lightweight model of requirements engineering 
practices – the REPM model [11]1.

In this paper we describe the results from 
evaluating the requirements engineering process in 
four companies, using the REPM model. The 
contribution of this paper is thus as a pilot study into 
requirements engineering practices in industry as well 
as the introduction and industrial application of the 
REPM model. This application is described in detail 
to illustrate (i) how the REPM model was used during 
these evaluations, (ii) what results were obtained, and 
(iii) how the results may be interpreted. 

The remainder of the paper is organized as follows. 
In Section 2 we describe the planning for the case 
studies conducted and the REPM model, and in 
Section 3 we describe the execution of the case 
studies. The results from the study is presented and 
discussed in Section 4, and the paper is concluded in 
Section 5. 

1 The REPM model can be downloaded at 
http://194.47.142.27 



84

2. Planning 

In this section we describe the context in which we 
conduct the study and the subjects involved, and 
present the design of the study as well as address 
validity issues. Furthermore the section holds a brief 
introduction to the REPM model itself.  

2.1. Context and Subjects 

The case studies are conducted in industry through 
in-person interviews by graduate students. The 
projects evaluated were concluded at the time of the 
study. This ensures that all of the stages in the RE 
process are completed at the time of the study.

The case studies involve a total of four companies. 
We chose to use two medium sized companies, i.e. 
under 500 employees, and two smaller ones (<150 
employees). This to ascertain that the model was 
tested on both small and medium sized enterprises. 
The only criterion demanded from the companies 
selected was that they had projects featuring a 
customer-developer relationship. Two of the 
companies are situated in Sweden, and two in Ireland. 

These companies were selected because we, or our 
local contact person on Ireland, had previous 
relationships with them and because they fit our 
criteria of large and small companies. 

The subjects being interviewed were in senior 
positions in the projects being evaluated and had 
knowledge about requirements engineering, and more 
importantly extensive knowledge about the projects 
selected for evaluation. The projects’ main 
responsible for requirements engineering was 
designated “project responsible” for each project 
evaluation session, but we did not put any limitations 
on the number of people that were present, as the 
positive effects of having a discussion with more than 
a single person in a senior position outweigh any risks 
that may be involved. 

Each of the projects being evaluated was selected 
by the interview subjects. This made it possible for 
the companies to avoid questions dealing with 
projects very sensitive to being exposed to outside 
parties and also made it possible for them to choose a 
project that was concluded, of the right sort 
(customer-developer) and of interest to get evaluated. 
It is important to realize that the companies 
participating wanted the evaluation to take place in 
order to get an evaluation of their requirements 
engineering process. This alleviated the threat that a 
“good” project was chosen, i.e. it was in the 
companies own interest to get a accurate evaluation. 

However this way of choosing projects introduces 
several threats to the study. The sampling is very 
much tainted by the person choosing the project and it 
may not be representative for the company at hand - it 
is a case of convenience sampling. In addition the 
choosing party can be biased, i.e. trying to portray the 

company in a positive way. We believe these risks to 
be small as the project responsible have nothing to 
loose in being honest and portraying the situation 
correctly – we informed them at a very early stage that 
the results of the evaluation would be treated as 
confidential. In addition the data gathered during the 
evaluations would have been less usable for the 
companies themselves if the evaluation was corrupted. 

2.2. Study design 

The study is based around a series of structured 
interviews (each interview represents one of the four 
cases). These structured interviews follow a model of 
requirements engineering practices that has been 
constructed by the authors, the REPM model [11]. In 
this section we briefly describe this model and how to 
interpret the results from it. 

2.2.1. Requirements Engineering Process Maturity 
Model 

To assess the state of the requirements engineering 
processes in the companies we have constructed a 
model of good requirements engineering practices. 
This model, the REPM model, is further presented in 
A Method for Assessing Requirements Engineering 
Process Maturity in Software Projects [11]. The 
model is inspired mainly by the work done by 
Somerville et. al. in the REAIMS project [12] but also 
other existing work, such as Sommerville & Sawyer 
[3] [8] CMM [6], ISO9000 [7], Jirotka & Goguen [2] 
and Kotonya & Sommerville [5]. The REPM model 
was constructed by combining these sources with 
personal experiences and including additional experts 
from academia and industry in the construction 
process. All of these sources were thus used to 
determine what should be included in the model and 
at what maturity level. 

For reasons of brevity it is impractical to include 
the entire REPM model in this paper. Instead, we 
describe it briefly below and a summary of the actions 
included in the REPM model is presented in Table 1. 
This is mainly intended to give a brief overview so 
that an opinion of the usefulness of the REPM model 
can be formed. For detailed information about the 
model and the contents please contact the authors. 

The REPM model mirrors what should be done to 
obtain a consistent requirements engineering process. 
The individual tasks of which the model is comprised 
are called actions. Actions are the smallest 
constituents of the model and are in turn mapped to 
one of three main categories (called Main Process 
Areas or MPAs in the model). The MPAs are: 
Elicitation, Analysis & Negotiation and Management.

Every action resides on a certain Requirement 
Engineering Process Maturity level (REPM level) 
spanning from 1 to 5, where level 1 represents a 
rudimentary requirements engineering process and 
level 5 represents a highly mature process. The 



85

actions on each level ensure a consistent and coherent 
requirements engineering process for the particular 
maturity level. 

The maturity levels enable us to evaluate 
companies with respect to requirements engineering 
with a better accuracy than if we simply assume that 
all actions are equally important. By “base-lining” the 
actions into maturity levels we can assess that a 
particular company has potential for a certain maturity 
in its requirements engineering processes and it 
enables us to see what actions should be focused on to 
achieve the particular maturity level.  

In Table 1 we see the different REPM levels, the 
goals associated with each maturity level and the 
actions presented under the relevant level. The actions 
are divided into groups by the MPAs of Elicitation, 
Analysis & Negotiation and Management. It is 
important to notice that achieving REPM level 1 
means completing all the actions under REPM level 1, 
achieving REPM level 2 involves completing all 
actions under REPM level 1 and all actions under 
REPM level 2. Thus in order to achieve REPM level 5 
one has to complete all actions presented in Table 1. 

Table 1. Action summary, REPM model 
REPM  Level 1 

Goals: 
1. Basic requirements specification

Action Name
Requirements Elicitation 

Ask Executive Stakeholders
Technical Domain Consideration
Executive Stakeholders

 In-house Scenario Creation 
Analysis and Negotiation 

Analysis Through Checklists 
Management

Document Summary
Term Definition
Unambiguous Requirement Description
Information Interchange Through CARE
Information handling Through CARE

REPM Level 2 
Goals: 

1. Introduction of traceability 
2. Introduction of validation of requirements 
3. Introduction of a standardized structure for 

the documentation produced as a result of the 
requirements engineering process, i.e. the 
Requirements Document 

4. Stakeholder identification
Action Name

Requirements Elicitation
Research Stakeholders
In-house Stakeholders
Scenario Elicitation - Executive Stakeholders

Analysis and Negotiation
Requirements Classification 

REPM Level 2 
Management

Requirements Origin Specification
Document Usage Description
Requirements Description Template
Quantitative Requirements Description
Prototyping
User Manual Draft
Requirements Test Cases
Requirements Identification
Backward-from traceability 
Backward-to traceability 

REPM Level 3 
Goals: 

1. Application domain and processes are 
studied and taken into consideration 

2. All stakeholders are consulted 
3. Dependencies, interactions and conflicts 

between requirements are taken into 
consideration 

4. Requirement categorization and 
prioritization 

5. Requirements re-prioritization 
6. Peer-reviews 
7. Risk assessment 

Requirements Elicitation 
System Domain Consideration 
Operational Domain Consideration 
General Stakeholders 

Analysis and Negotiation 
Interaction Matrices 
Boundary definition through categorization 
Prioritizing Requirements 
Re-prioritization – New Requirements  
Re-prioritization – New Releases  
Risk Assessment – selected OG1.03 

Management
Global System Requirements Identification 
Record Requirements Rationale 
Business Case 
Descriptive Diagrams usage  - Opt
System Models 
Requirements Review 
Forward-from traceability 
Volatile Requirements Identification 
User documentation 
System documentation 

Actions REPM Level 4
Goals: 

1. Human domain consideration 
2. Business domain consideration 
3. Advanced risk assessment  
4. Advanced traceability 

Requirements Elicitation
Human Domain Consideration
Business Domain Consideration
Scenario Elicitation - General Stakeholders

Analysis and Negotiation
Ambiguous Requirements refinement Opt
Re-prioritization due to Change 
Risk Assessment – individual  - OG1.01
Risk Assessment - sets  - OG1.02

Management
Environmental Models
Requirements Inspection
Forward-to traceability 
Management documentation 



86

Table 1. Action summary, REPM model 
Actions REPM Level 5 

Goals: 
1. Requirements reuse  
2. Rejected requirements documentation 
3. Architectural modeling 
4. Advanced validation 
5. Advanced requirements re-prioritization 

Requirements Elicitation
Requirements Reuse

Analysis and Negotiation
Re-prioritization with Regularity

Management
Rejected Requirements Documentation
Architectural Models
System Model Paraphrasing
Version traceability 

2.2.2. Structured Interview Design 

Based on the REPM model a checklist is 
constructed, which we use to guide the structured 
interviews. This checklist takes each action and 
formulates it as a question which can be answered 
with one of the three answers: completed,
uncompleted and satisfied-explained.

The purpose of the satisfied-explained category is 
to take model compatibility into consideration. 
Companies carrying out projects in special 
environments unlike the traditional customer-
developer environment may deem certain actions 
unnecessary and have compelling reasons for this 
opinion.  

An example can be a company where the 
developer and the customer both are specialists in a 
certain domain and hence “speak the same language”. 
The need for extended clarification and validation of 
requirements may not be needed, e.g. the construction 
of prototypes can be omitted. Satisfied-explained thus 
denotes an action that is not completed but the 
organization doing the evaluation deems the action 
not applicable to their project. 

The organization doing the evaluation makes the 
distinction when an action is to be considered 
satisfied-explained. It is important to notice that an 
action should not be deemed satisfied-explained for 
reasons like lack of time, lack of money, lack of 
know-how or just “did not think of it”. 

2.2.3. Results from Interviews 

The results of a project evaluation are presented as 
four tables, one for each MPA and one summarizing 
all of the results. An example of such a table is found 
in Table 2. This table is an example of a summary 
table for all three MPAs for one project evaluation. 
We see that the actions for each REPM level are listed 
separately, and that e.g. REPM level 2 contains a total 
of 14 actions, of which 9 are completed and 4 are 
satisfied-explained (14 – (9+4) = 1 is uncompleted). 

Table 2. Example of Project Evaluation result 
REPM 
level 

Total 
Actions Completed 

Satisfied-
Explained 

1 10 8 2 
2 14 9 4 
3 19 11 4 
4 11 4 2 
5 6 1 4 

To assist in the interpretation of the results, we 
suggest that the results are also presented as graphs, as 
the example in Figure 1. The graphs represent a 
simple overview of the results and it is recommended 
that all results be presented in this way as well. 
However, due to lack of space, we are unfortunately 
unable to do this in this paper. The absence of the 
diagrams should thus not be interpreted as a statement 
against their worth. A complete list of diagrams can 
be viewed in [11].  

In the graph, the solid gray line represents the total 
number of actions, the solid black line represents a 
summary of all actions that are completed and 
satisfied-explained. The dashed line represents the 
actions that are actually completed. The area between 
the dashed line and the solid black line denotes to 
what extent the REPM model is inapplicable to the 
project being evaluated (called model lag), the area 
between the solid black line and the gray line 
represents the area of possible improvement of the RE 
process. 

Total Actions / REPM level

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5

REPM level

Ac
tio

ns
 (n

um
be

r)

Total Actions Completed Satisfied-Explained

Figure 1. Example of result diagram 

The tables and graphs are interpreted as follows. 
Starting with the first REPM level, if all actions are 
completed or satisfied-explained, i.e. the solid black 
line overlays the solid gray line, this level of maturity 
is achieved. This would mean, if no more REPM 
levels are achieved, that the company has a consistent 
and complete requirements engineering process of a 
low maturity level. This is then repeated for each of 
the REPM levels. Note that all lower REPM levels 



87

must also be completed before a certain REPM level 
is achieved. 

In Table 2 and Figure 1, for example, we see that 
REPM level one is achieved and only one action more 
is required to achieve REPM level two, whereas four 
more are required to achieve level three. Strictly 
speaking, this project would be considered to be on 
REPM level 1, but as only one action is necessary to 
get it up to level two this is the level that we think this 
company should aim for in a first step. This would 
ensure a consistent requirements engineering process 
that is fairly basic but may be sufficient for this 
company’s needs. 

2.3. Validity evaluation 

In this section we discuss the threats to this 
investigation. We base this on the discussion of 
validity and threats to research projects presented in 
Wohlin et al. [13]. 

2.3.1. Conclusion validity 

Four cases are inadequate for statistically sound 
generalization purposes. However, this is not the main 
intention of this study. The main intention of this 
study is to serve as a pilot project to see whether it is 
possible to assess the state of requirements 
engineering practice using the REPM model, and to 
possibly provide some early results as to what areas 
within requirements engineering are subject to most 
problems. 

The checklist used for the case studies (structured 
interviews) was validated through preliminary testing 
and proofreading by several independent parties, this 
to avoid factors like poor question wording and 
erroneous formulation. 

Each case study interview was conducted without 
any break. Thus the answers were not influenced by 
internal discussions about the questions during e.g. 
coffee breaks. 

The sampling technique used, i.e. convenience 
sampling, can pose a threat to the validity of the 
investigation. The companies selected are not 
necessarily representative of the general population of 
software development companies, on the other hand 
there is no evidence that they are not.  

2.3.2. Internal validity 

 Prior to the interviews the subjects had access to 
the REPM model so that they could acquaint 
themselves with the model (see Section 2.2.1) In 
addition the REPM evaluation checklist was 
explained before it was used. These steps were taken 
to avoid problems with maturity, i.e. that the first 
questions would act like a learning process and thus 
be answered with a different presupposition than the 
remaining questions. The preparation described was 
executed in an identical manner for each of the four 

case studies. We did not encounter any problems with 
this due to the fact that the subjects being interviewed 
had similar backgrounds, i.e. experience in the field of 
requirements engineering and software development. 

2.3.3. Construct validity 

The REPM model itself can be a threat to the 
investigation. If the model is unsatisfactory when it 
comes to content and/or structure it follows that the 
result of each case study (and thus the investigation) 
may be threatened to the same extent. Another 
important point is the usage of the model by the 
investigators and by the interview subjects. Using the 
REPM model as a tool in a manner not consistent with 
the initial intent may diminish the result obtained 
through the usage.  

To reduce these risks the REPM model and the 
checklist were validated before the case studies were 
conducted. The validation was two-fold. First the 
model was scrutinized by the creators and an 
independent expert from academia. The second round 
of validation was conducted by an independent expert 
from industry. During the validation process the 
models structure and contents was modified when 
appropriate. 

3. Operation 

Having prepared the model, the checklist and a 
way to present the results, the next step consists of 
contacting companies and actually conducting the 
study. In this section we describe this, starting with 
the preparations and continuing with experiences from 
the actual execution. 

3.1. Preparation 

A copy of the REPM Model was sent to the 
interview subjects in advance. This to give all people 
involved a chance to study the model and its 
constituents in order to prepare them for the work 
during the project evaluations and to note any 
questions they wished to address.  

In addition to this the participating companies were 
asked to choose a project to be evaluated and 
instructed that the project should be of a customer-
developer type, i.e. not an internal development 
project but featuring an external customer. This due to 
the fact that the REPM model at this stage of its 
development is adapted primarily for these types of 
projects. In addition we asked the person(s) mainly 
responsible for the requirements engineering process 
for the projects selected to be present as the interview 
subjects at the project evaluation session.  

The interviews in Ireland were preceded by 
personal contact and emails to prepare for the 
evaluation. 



88

3.2. Execution

At the initial stage of the interview the basic layout 
of the evaluation was explained. Information about 
how the Project Evaluation Checklist version 1.4 (can 
be obtained from the authors) is structured, and how it 
is connected to the REPM model was provided. In 
addition we asked the people evaluating the project to 
“think-aloud” when answering the questions. An 
important thing we clarified was the concept of 
satisfied-explained actions, i.e. that the model may not 
suit all projects and that this concept was introduced 
to compensate for that fact.  

All interviews were made on-site and in person. 
We find in-person interviews beneficial in several 
ways. It is often possible to extract more information 
as well as avoiding misunderstandings. However there 
can also be negative aspects like the interviewer 
influencing the interviewees [14] [15]. By strictly 
adhering to the pre-planned structure of the interview 
and only deviating when further explanations were 
necessary, we believe that the risk that this has 
occurred is low. 

Each case study interview was estimated to take 
between 1.5 to 2 hours. This was based on an earlier 
test interview conducted using a software engineering 
post graduate student. The time spent on the 
interviews mirrored our estimation. 

During the interviews we were somewhat surprised 
by the tendency for the subjects to engage in 
discussions related to the topic of requirements 
engineering in general and more specific topics as the 
questions reflected certain actions. We tried to steer 
the interview towards completing the checklist but did 
not categorically refuse to discuss matters. More often 
than not the discussions helped to clarify different 
points, and often the discussions were more or less 
one sided, i.e. the interview subjects discussed matters 
to clarify their own trail of thought to themselves 
before answering a question. We only got involved in 
the discussion when necessary, trying not to influence 
the answers by adding information not already present 
in the model and/or in the checklist. We took this 
decision to ensure that each interview subject received 
the same amount of information, so as not to change 
the conditions of any one interview in comparison 
with another.  

3.3. Data validation 

During the interview the subjects discussed their 
answers aloud as the questions were answered. This 
helped us catch misunderstandings, and if necessary 
we clarified the relevant questions in an effort to elicit 
a relevant answer to the question at hand.   

All of the answers are included in this 
investigation. Our goal is to ascertain the status of the 
requirements engineering process in companies today, 
therefore all answers are relevant. Four case studies, 

and thus four interviews, were conducted. They are all 
presented in the study, no case studies were 
disqualified due to reasons such as lack of conformity.  

4. Analysis and interpretation 

In this section we present the results from the case 
studies (each case study is represented by one 
project). We do this in four tables, one for each 
project/case study. As mentioned earlier, it is easier to 
analyse the data if the results are presented as graphs 
in the same form as the examples in Figure 1. Due to 
lack of space, we are unfortunately not able to do this 
here, and instead refer you to [11], where these graphs 
are available. 

We refer to the different projects as project alpha, 
beta, gamma and delta respectively. Projects gamma 
and delta are from what we consider small companies. 

4.1. Presentation of results 

In this section we present the results from the case 
studies (each case study is represented by one 
project). We do this in four tables, one for each 
project/case study. We refer to the different projects 
as project alpha, beta, gamma and delta respectively. 
Projects gamma and delta are from what we consider 
small companies. 

In Table 3 we see the data from project alpha, and 
in Table 4, 5 and 6 we see the data from project beta, 
gamma and delta, respectively. 

These tables are read as follows. There are four 
groups of data, each containing three columns. These 
columns list the total number of actions on each 
REPM level, the number of actions completed and the 
last column lists the number of actions satisfied-
explained for the REPM level. The first group of three 
columns is a summary of the following three groups, 
which are the actions within the MPAs Elicitation, 
Analysis and Negotiation and Management, 
respectively. 

We see that no project fulfils even REPM level 1. 
However, if we count those where only one or two 
actions are missing, we see that project alpha is close 
to REPM level 1, project beta close to level 2, project 
gamma close to level 1, and project delta close to 
level 2. We also see that project beta has potential for 
being on level 5, and that the others probably would 
benefit from completing the remaining actions for 
their respective REPM level and aim for REPM level 
3. Level 3 represents a requirement engineering 
process that is fairly advanced and not just the bare 
basics, while still being streamlined and suitable for 
many software organizations. 



89

Table 3. Project alpha 
Action 
Summary 

Elicitation Analysis & 
Negotiation Management 

R
EP

M
 le

ve
l 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

1 10 8 0 4 3 0 1 0 0 5 5 0 
2 14 8 2 3 1 1 1 1 0 10 6 1 
3 19 12 2 3 2 1 6 4 0 10 7 0 
4 11 6 1 3 1 1 4 2 0 4 3 0 
5 6 2 0 1 0 0 1 0 0 4 2 0 

Table 4. Project beta 
Action 
Summary 

Elicitation Analysis & 
Negotiation Management 

R
EP

M
 le

ve
l 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

1 10 8 1 4 4 0 1 1 0 5 3 1 
2 14 10 2 3 2 1 1 1 0 10 7 1 
3 19 15 1 3 3 0 6 5 1 10 7 0 
4 11 9 1 3 2 1 4 3 0 4 4 0 
5 6 4 0 1 1 0 1 1 0 4 2 0 

Table 5. Project gamma 
Action 
Summary 

Elicitation Analysis & 
Negotiation Management 

R
EP

M
 le

ve
l 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

1 10 8 0 4 3 0 1 0 0 5 5 0 
2 14 7 0 3 2 0 1 1 0 10 4 0 
3 19 13 1 3 3 0 6 3 0 10 7 1 
4 11 3 2 3 0 1 4 2 0 4 1 1 
5 6 1 1 1 0 1 1 0 0 4 1 0 

Table 6. Project delta 
Action 
Summary 

Elicitation Analysis & 
Negotiation Management 

R
EP

M
 le

ve
l 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

To
ta

l A
ct

io
ns

 

C
om

pl
et

ed
 

Sa
tis

fie
d-

Ex
pl

ai
ne

d 

1 10 9 0 4 4 0 1 0 0 5 5 0 
2 14 9 4 3 2 1 1 1 0 10 6 3 
3 19 11 4 3 3 0 6 1 3 10 7 1 
4 11 5 3 3 3 0 4 0 1 4 2 2 
5 6 3 1 1 1 0 1 0 1 4 2 0 

4.2. Analysis of Results 

First, we always recommend a homogenous REPM 
level across the three MPAs. The reason for this being 
mainly dependencies. If a project’s requirements 

engineering process resides on REPM level five when
it comes to the MPA of Requirements Elicitation but 
only on level two in the other two MPAs this would 
not be a consistent and coherent requirements 
engineering process. Moreover, in many cases actions 
under one MPA are dependent on other actions being 
completed under another MPA. 

In this respect, none of the projects succeed. The 
process area where all of the projects fail is that of 
Requirements Management. There are several reasons 
for this. Requirements Management is the largest 
MPA, i.e. housing the largest number of actions, and 
thus there is more to complete for this area. Moreover, 
this area contains actions which are notoriously 
difficult to accomplish in an efficient way, such as 
traceability and change policies. We are also quite 
stringent in how we think a requirements document 
should be structured and the individual requirements 
written which is reflected in the REPM model under 
requirements management where the actions for 
requirements documentation are included. 

Assuming that all organizations should strive for at 
least REPM level 3 there are several actions that two 
or more projects need to complete. These are: 

In Elicitation, the action In-house Scenario 
Creation (REPM level 1). This action is 
concerned with creating scenarios for 
elicitation purposes but to only consult the 
developers in the projects. As there are other 
actions where stakeholders are consulted and 
none of the projects fail to do this, the 
companies may think that if stakeholders are 
consulted it is not necessary to consult the 
developers. 
In Elicitation, the action Research
Stakeholders (REPM level 2). Who the 
stakeholders are is researched during this 
action. This can help identify groups that are 
affected by the requirement, and thus the 
basis for gathering information about a 
requirement is wider if the action is 
performed. That this action is not done may 
stem from a trust that the customer provides 
information regarding all stakeholder groups 
as this is in the best interest of the product 
and hence the customer. The development 
companies may forget who it is in the 
customer-developer relationship that has 
experience with requirements engineering. 
In Analysis and Negotiation, the actions 
Analysis through Checklists (REPM level 1) 
and Interaction Matrices (REPM level 3).
Analysis through checklists refers to having 
standardized checklists that are used to 
ensure certain standardized qualities of each 
requirement. Interaction matrices are 
constructs that can help catch requirements 
dependencies, conflicts or other interactions 
between requirements. These are very simple 
tools that can help catch problems with 



90

requirements at an early stage, and we are 
surprised that this is not done in all 
companies. 
In Analysis and Negotiation, the action Risk 
Assessment – Selected (REPM level 3). This 
action is part of a group of actions, of which 
one, but only one, must be completed. The 
remaining actions in this group are on REPM 
level 4, so this is the least possible amount of 
risk management that should be done with 
respect to requirements analysis and 
negotiation. What it means is simply that 
certain requirements are, based on intuition, 
identified as being extra prone to risk and 
then a risk assessment is performed for these 
requirements. 
In Management, the action Quantitative 
Requirements Description (REPM level 2).
With this action we mean that all 
requirements – especially quality 
requirements – should be specified such that 
they can be measured. Quality requirements 
are a notoriously difficult subject that is still 
the subject of much research. It is thus not 
surprising that the companies reflect the 
amount of uncertainty in the research 
community regarding quality requirements 
and their quantifiability. 
In Management, the actions Requirements 
Review (REPM level 3) and User Manual 
Draft (REPM level 2). These two actions are 
concerned with validating the requirements. 
The second of these two actions suggests that 
an initial user manual is written based on the 
requirements, which serves as an informal 
walkthrough of the requirements. That this 
action is not completed in two of the 
companies may simply be that they have not 
thought of it. 
In Management, the action Document Usage 
Description (REPM level 2). Different user 
groups often use the requirements document 
in different ways. A document usage 
description is a manual aimed at aiding 
different users of the document, helping them 
use and navigate the document. This may 
often be forgotten as it seems obvious to 
those writing the document how to read it. 
In Management, the action Backward-to 
Traceability (REPM level 2). This action 
links the design and implementation back to 
the requirements. That this is not done may 
be a result of waterfall-inspired development 
methods. If previous development steps such 
as requirements engineering is never re-
visited, what is the point in tracing the 
requirements backwards. Moreover, many 
companies may not update the requirements 
specification if the design and 

implementation deviates from what is 
specified. 

4.3. Summary and Interpretation of results 

Only 9 of the 43 actions up to REPM level 3 are 
not completed by two or more projects. However, 
many of the uncompleted actions are quite severe, and 
we are surprised that they are not done in all 
companies. For example, risk assessment seems to be 
a neglected area, and interactions between 
requirements do not appear to be mapped, which of 
course can cause severe problems if there are in fact 
conflicting or volatile requirements. Also, we are 
surprised that companies still spend time and effort on 
stating requirements without providing a 
measurement, as there is no way of telling when the 
requirement is fulfilled if this is not done. As 
mentioned quality requirements, where this is most 
often missed and required the most, is a subject with 
much research focus and methods are still needed for 
quantifying these quality aspects of software systems. 

The size of a company does not seem to have a 
direct correlation to the maturity of the requirements 
engineering process to the extent believed initially. If 
we look at project alpha and beta approximately 68% 
(for project alpha) and approximately 85% (for 
project beta) of all the actions are fulfilled. The 
numbers for gamma and delta (the smaller companies) 
are 60% and 81%, respectively. At an initial glance 
the numbers seem very much comparable, even if the 
larger companies have a small advantage. To see the 
whole picture however one has to take the amount of 
actions deemed satisfied-explained under 
consideration. In project alpha, beta and gamma the 
number of actions in this category seem to be a fairly 
constant 8%, whereas in the case of delta the number 
of satisfied-explained actions is 20%.  It is vital to 
understand whether the latter figure is the result of 
model inapplicability (See Section 2.2.1) or not, in 
order to find out whether project delta is 
representative as a small company project or not. 

If the number has another reason than model 
inapplicability this may indicate a distinct line 
between medium sized and smaller companies when it 
comes to requirements engineering. The projects in 
this study were chosen with the same criteria in mind, 
and thus should be generally compatible when it 
comes to model applicability. A widened study, 
involving more companies is necessary to understand 
whether this distinction between medium sized and 
smaller companies exist. 

The MPA of Requirements Management is 
generally the one needing most improvements, i.e. the 
MPA with most actions not completed. There are 
several reasons for this. As mentioned Requirements 
Management is the largest MPA, i.e. housing the 
largest number of actions, and thus there is more to be 
completed. Another reason may be that the actions 
under this particular MPA are fairly advanced, i.e. on 



91

a higher REPM level relative to the total number of 
actions. An example of this is that there are more 
actions under the MPA of Requirements Management
on REPM level 5 than there are under the other MPAs 
in total. 

5. Conclusions

The main purpose of the investigation presented 
above was to (1) to give an idea of the problem scope 
pertaining to requirements engineering practices in 
industry, and (2) test a method for quickly 
ascertaining the status of requirements engineering in 
companies. This was done through the design of the 
REPM model, which in turn was used for the 
investigation.  

Firstly, if we look at results gathered from the four 
cases they may of may not be generalizable to a larger 
set of companies, i.e. if replications of this study show 
similar results, there are several ways to react to this, 
depending on what audience one belongs to. 

For researchers, the question seems to be to find 
effective and attractive methods for risk assessment 
and for requirements management. For development 
companies, the reaction should be to first assess 
whether the very simple actions are done, as we 
believe this would vastly enhance the quality of the 
resulting products and, above all, reduce the risks 
involved. 

For companies participating in an evaluation such 
as the ones presented above, the results should be 
analyzed to decide whether or not there is an 
indication of a problem. The second step is then to 
study the evaluation, examine the improvement 
suggestions and the conclusions drawn for 
inaccuracies and/or neglected parts. It is also 
important to scrutinize the actions deemed to be under 
the category of Satisfied-Explained to ensure that they 
are put there for the right reason. After the evaluation 
review a plan should be constructed based on the 
improvement suggestions and improvement 
consequences. This plan should state what measures 
should be taken. One way proceed is to order a more 
comprehensive and exhaustive examination of the 
requirements engineering process using the results 
from the REPM model evaluation as a first insight to 
where the problems may reside. Another way to go is 
to use the REPM results purely as a basis for deciding 
on a more thorough investigation. In the latter case the 
results from the two investigations could be validated 
through a subsequent comparison. 

Secondly, if we look at the REPM model itself and 
the use of it in the four cases there are two main parts, 
namely the gathering of the data using the Project 
Evaluation Checklist (see section 0), and the 
evaluation and interpretations of the results (see 
section 4).  

The main point in constructing the REPM model 
was to get a fast, easy and cost effective evaluation of 

a requirements engineering process. During the 
industrial application of the model the gathering of the 
data took no more than eight person-hours per project. 
The subsequent analysis of the data took 
approximately 30 to 40 person-hours per project. This 
gave us at most 48 person-hours in cost for the REPM 
evaluation of a project, which can be considered to be 
fast.   

In this paper a fairly detailed description was 
presented of how the industry cases (projects) were 
evaluated. During the gathering of data the actions 
were deemed as belonging to one of three categories, 
i.e. Completed, Uncompleted or Satisfied-Explained 
(see section 0). The diagram example presented in 
section 2.2.3 gives information of how result 
diagrams could be constructed to give an overview of 
the process (as well as parts of the process), and how 
the data could be evaluated and interpreted is 
presented in sections 4.2 and 4.3. One could go so far 
as to claim that the collection of the data is fairly easy 
using the Project Evaluation Checklist. The analysis 
and interpretation of the results on the other hand does 
demand some expertise in the area of requirements 
engineering, although the complete REPM model 
offers some insights into the area.  

Whether usage of the REPM model is cost 
effective or not is of course dependent on how 
accurate and exhaustive the gathered results are. As 
mentioned before emphasis was put on speed and 
ease, not exhaustiveness. If we look at the results 
from the case studies quite a few indications point to 
areas of possible improvements. However this does 
not give any information about things potentially 
missed. In our experience the REPM model provides 
an indication of problem areas that should be 
scrutinized further. An REPM evaluation could be 
used to develop a plan for what steps to take in order 
to improve a requirements engineering process, 
though it is important to realize that the REPM model 
is lightweight, and an evaluation taking 48 person-
hours is bound to overlook issues.  

It is also important to notice that the REPM 
evaluation is project based. If a company has a 
“generic” (typical) project to evaluate one instance 
may suffice. On the other hand most companies may 
need to evaluate more than one project in order to get 
an accurate (and more exhaustive) picture of their RE 
process, this is especially true for companies without a 
standardized and repeatable process. 

As the results from the cases were presented to 
each of the companies the general view was that some 
of the results gathered were already more of less 
known, but for the most part the REPM evaluation 
results were seen as valuable insights in the respective 
company’s process offering an indication that further 
study was warranted.   



92

5.1. Future work 

This study serves as a pilot study as far as 
ascertaining (1) the problem scope pertaining to 
requirements engineering practices in industry, which 
is the reason why only four companies have 
participated. In order to gain real understanding of 
what is done and what is not done in industry today, 
an extended study involving a larger set of companies 
needs to be performed. We also need to further 
understand the relation between what is considered an 
inadequate requirements specification and the 
connection between this and the maturity of the 
requirements engineering process at large. 

We encourage others to design and execute similar 
investigations on their own, as there is a clear and 
present need for knowledge about the status of 
requirements engineering in industry today. 

(2) If we look at the REPM model there is a need 
for further evaluation, refinement and validation. 
There is also a need to validate results gathered with 
the REPM model by using another approach (other 
model/method). This would provide further 
information on of how accurate and cost effective the 
REPM model is, as well as how the REPM model can 
be improved upon.  

(3) A study of how the results from a REPM 
evaluation can be used in further and more detailed 
RE process evaluation is also warranted. I.e. how to 
use the REPM results obtained to take the next step, 
either towards further evaluation or maybe even a the 
creation of an adequate improvement plan.   

6. References 

[1] C. Clegg et al, The performance of information 
technology and the role of human and organizational 
factors, OASIG Study, University of Sheffield, UK, 
1996. 

[2] M. Jirotka and J. Goguen, Requirements 
Engineering – Social and Technical Issues, Academic 
Press, London, UK, 1994. 

[3] I. Sommerville and P. Sawyer, Requirements 
Engineering – A Good Practice Guide, John Wiley & 
Sons, Chichester, UK, 2000. 

[4] J. Van Buren and D.A. Cook, Experiences in the 
Adoption of Requirements Engineering Technologies,
in CROSSTALK - The Journal of Defense Software 
Engineering (11)12, pp. 3-10, 1998. 

[5] G. Kotonya and I. Sommerville, Requirements 
Engineering – Processes and Techniques, John Wiley 
& Sons, Chichester, UK, 1998.  

[6] M. C. Paulk, B. Curtis, M. B. Chrissis and C. V. 
Weber, The Capability Maturity Model: Guidelines 
for Improving the Software Process, Addison-Wesley, 
Reading Massachusetts, USA, 1995. 

[7] The TickIT Guide – Using ISO 9001:2000 for 
Software Quality Management System, Construction, 
Certification and Continual Improvement, Issue 5.0, 
2001, http://www.tickit.org/ Last checked: 2002-10-
01.

[8] P. Sawyer, I. Sommerville, S. Viller, Capturing 
the benefits of requirements engineering, in IEEE 
Software 16(2), pp. 78-85, 1999. 

[9] CMMI® Product Development Team, CMMI for 
Systems Engineering, Software Engineering, 
Integrated Product and Process Development, and 
Supplier Sourcing Version 1.1 (CMMI-
SE/SW/IPPD/SS, V1.1), Staged Representation.
Technical Report CMU/SEI-2002-TR-012. 

[10] http://www.sqi.gu.edu.au/spice/, March 2003. 

[11] T.B. Gorschek, K. Tejle, A Method for Assessing 
Requirements Engineering Process Maturity in 
Software Projects, Master's Thesis MCS-2002:2, 
Blekinge Institute of Technology, Ronneby, Sweden, 
2002.

[12]http://www.comp.lancs.ac.uk/computing/research/
cseg/projects/reaims/index.html , May 2003. 

[13] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, 
B. Regnell and A. Wesslén, Experimentation in 
Software Engineering – An Introduction, Kluwer 
Academic Publishers, Boston, USA, 2000. 

[14] S. Körner, Statistisk Slutledning (eng:”Statistical 
Deduction), Stundentlitteratur, Lund, Sweden, 1985.

[15] C. Robson, Real World Research, Blackwell 
Publishers Ltd., Oxford, UK, 1995. 

[16] N. Malhotra, Marketing Research, An Applied 
Orientation, 2nd Edition, Prentice Hall, Upper Saddle 
River NJ, USA, 1996. 



93

From Process Model to Problem Frame – A Position Paper

Karl Cox Keith Phalp
CSE, University of New South Wales,

National ICT Australia

karlc@cse.unsw.edu.au

ESERG,

Bournemouth University, UK

kphalp@bmth.ac.uk

Abstract

Jackson’s Problem Frame (PF) approach presumes

that some knowledge of the application domain and

context has been gathered so that a Problem Frame can

be determined. However, the identification of aspects of

the problem, and hence, its appropriate ‘framing’ is

recognized as a difficult task. One way to help describe

the problem context is through process modelling. Once

contextual information has been elicited, and explicitly

described, an understanding of what problems need to be

solved will emerge. However, this use of process models

to inform requirements is often rather ad-hoc. Hence, this

position paper proposes guidance for directly deriving

Problem Frames from business process models. The

paper presents an outline method for PF derivation, and

argues why this may be useful to the developer. Finally,

the authors discuss the issues involved in attempting to

derive a more formal mapping between Problem Frames

and business process models.

1. Introduction

In recent years many software developers have
produced models of client business processes [1] as an
up-stream software development phase [2]. However,
although it is generally agreed that such process models
are valuable in informing requirements, the exact nature
of how the process model maps to subsequent
(requirements) phases is less clear.

Some authors have suggested what might be termed
‘process approaches’ [3] to development methods, but
these tend to adopt particular design tactics, where the
process model replaces more ‘popular’ design notations.
Others have attempted to examine how process models
might map to existing approaches, for example, mapping
process models to formal approaches [4] or more latterly,
to use cases [5]. Although there is merit in these
approaches, one of the problems is that in methodological

terms they are implementation dependent. That is, they
assume a particular design approach, whether process
driven or more conventional (such as the UML) [6].

However, it would be particularly useful if process
models could be used to help partition and inform
requirements, without assuming a particular subsequent
approach to design. This leads on to the idea of
combination with Problem Frames [7]. Indeed, one of the
premises of the PF approach is that the proper ‘framing’
of the problem should suggest appropriate notations both
for requirements capture and design [8]. In addition, it is
also clear that whilst simple single frame problems may
often be correctly identified, the framing of real-world
problems is often far from trivial [9].

Therefore, in this paper we attempt to show how
process models might be used to inform the derivation of
Problem Frames. This would then allow process
knowledge to be used within requirements phases, and
would aid the, non-trivial, process of ‘framing’ problems.
As an exemplar notation, we use Role Activity Diagrams
(RAD) [10] a well-regarded process modelling notation.

1.1. Related work on problem frames

Related work on Problem Frames (PF) has focussed on
identifying what techniques are most useful to eliciting
and documenting requirements and specifications once
the PF is known [8, 11], and in attempting a formalization
of the PFs [12]. Current research is exploring the role PFs
have with aspects of software architecture [13]. These
works view the PF as already determined and present
ways to help subsequent development. Sikkel et al. [14]
propose a variant on the PF. They present a decision tree
to help determine what kind of business solution a
company might need, such as whether to opt for a COTS
product or to bolt on new functionality to the current
system. With regard to process modelling and problem
frames, there is, to our knowledge, no research currently
being conducted.



94

2. From process models to context diagrams:
a good starting place?

The step from process models to context diagrams is
not new [15]. Indeed, to map from a Role Activity
Diagram (RAD) to Jackson’s variant of the traditional
context diagram is straightforward. Table 1 shows the
components of both diagrams and how they map.

Table 1. Mapping RAD to context diagram
RAD Jackson Context Diagram

Role Domain of Interest / Machine
Interaction Interface

Action -

Customer Machine

Print Room
Staff

Get
applications

Notify Customer

Printers

Post
applications

print

Customer

Sign
application

Return application

Company

Bank

Apply for
Account

activate Customer
account

Machine

inform of new
account

send new
Customer pack

starter interaction

recipient interaction

action

Key

Figure 1. Example role activity diagram

As an example, figure 1 describes a RAD of a
simplified process of applying for an online share trading
account. This is mapped to a context diagram (figure 2).

Essentially the diagrams (figs. 1 and 2) are the same. In
fact, it can be conjectured that there is a loss of
information if we describe by context diagram alone.
There is no explicit representation of the internal actions
of the domains that are vital to the success of the
business. In figure 1, actions within roles are made

apparent (by black squares) – the Customer role action
‘sign application’. What is also required is a textual
description of each domain (not detailed in this paper).

Machine

Customer

Print
Room
Staff

Printer

Bank

A

Company
B

C

D

E

F

G

H

Figure 2. Context diagram

The interfaces between the domains can be made
explicit and are described in table 2. For example, for
interface A, CU!{…} means that the Customer domain is
responsible for the interaction with the Machine domain.

Table 2. Interfaces on the context diagram
Interface Description

A CU! {apply}
MA!{notification}

B PRS!{retrieve application}
C PRS!{print application}
D PRS!{post application}
E CU!{return application}
F CO!{activate account}
G MA!{new account details}
H BA!{welcome}

This indicates which domain is responsible for what,
that is, what role they play in the process. The next step
ought to be to consider how to determine the PFs. But
there is a problem here.

3. Problems mapping to problem frames?

The context diagram, as derived from the process
model, does not explicitly show the information the
problem frames might need. For example, if we have a
Workpiece frame, where in the context diagram or the
process model is there a design domain (other than the
machine)? The process model does not necessarily
describe what type of problems there might be – just the
way that the business works for this particular scenario.

As such, it is not clear whether we are describing
fundamental problem frames or decomposed ‘process-



95

oriented’ problem frames. Hence, there is a risk of simply
following the process through onto subsequent frames
without consideration of the ‘big picture’. That is,
bypassing the fundamental problem frames for the finer
details of transforming a process model into a set of
‘process frames’.

4. The frames

What, then, can be derived from a process model that
will determine the problem frames? Figure 1 shows the
Customer creating an online trading account. Thus, this is
a Workpiece problem frame (figure 3).

MachineCustomer Customer
Account

Account
Rules

Figure 3. Workpiece frame

It can be seen that the Customer Account domain in
figure 3 is not apparent in either the context diagram or
the RAD, though it is a fundamental (design) domain in
this problem. This shows that the mapping to the context
diagram from the RAD, though easy, does not necessarily
provide all of the information for the problem frame. (The
black dot indicates the Customer Account domain is
found within the Machine itself – it is a design domain.)
However, we can elicit this domain by further exploring
the nature of the account creation activity. This can be
achieved, for instance, by decomposing the RAD further,
revealing the details of the interaction. We can also
examine the interfaces within the context diagram.
Validating the account creation process with the
necessary stakeholders will verify that the Customer
Account domain is right – and of its legal status.

4.1. Further potential problem frames

There are at least two other frames identified through
further analysis of the problem domain (not shown): the
Commanded Behaviour frame allows the Customer to
manipulate their Customer Account online – transfer
funds, buy and sell stocks and shares. The third frame
would be an Information Frame. The Customer can check
the current stock prices on the Web Application.

These three core frames might need to be decomposed
further. For instance, how does the Web Application

show the stock prices? Perhaps a Connection frame is
required here.

5. Outline of a mapping

Process models do not necessarily convey the
information required to determine PFs, even when
mapped into context diagrams, because domains key to
the success of the PF approach are not always apparent,
particularly if the missing domains are design domains –
such as in a Workpiece. This makes the step from a
process to a PF view more complicated. We thus propose
initial guidelines to assist in this task. The guidelines are
rudimentary and are based upon our experiences thus far.
We will formalise them as our research continues. Table 3
describes the steps in this (iterative) process.

Table 3. RAD to problem frame
Step Action

1 Describe Role Activity Diagram
2 Identify outcomes of interactions
3 Identify potential domains from outcomes
4 Identify potential rules that govern interactions
5 Identify problem frames

The first step is to describe a process model (in our
case a Role Activity Diagram (RAD)). We note that
companies might have existing process models in other
notations, but choose, for now, to limit our guidance to
RADs.

Step two identifies the outcomes of interactions
between roles. In the above example, an outcome of the
‘apply for account’ interaction is the creation of a new
customer account.

As step three indicates, this outcome is then considered
as a potentially new domain. Each is asked:
• Is the outcome something that will be used, altered or

referred to a number of times from different
perspectives? In other words, a domain of interest.
That is, it is not simply a transient outcome. (The
Customer Account will be manipulated or referred to
through its lifetime by the Customer, the Bank, and
the Print Room Staff in different scenarios.)

• We use Bray’s domain taxonomy to determine its
type [11]. Is the domain a design domain? Inert? (We
can say that the Customer Account is something that
will be created and held within the machine and will
not change its state independently.) Other questions
are: is the domain static (not changeable with time in
any way), reactive (predictable), completely
controllable (programmable), partially predictable
(biddable) or entirely uncontrollable (autonomous)?



96

Step four explores what rules are in place to control
interactions. For instance, when the Customer applies for
the account, they have to enter required financial
information, such as current bank account details. The
financial credit status of the Customer, we discover, is
electronically checked by connecting to a credit agency.
Legal requirements also govern the application procedure
and these have to be discovered. The machine then steps
the Customer through a precisely defined application
procedure.

Step five then identifies the PF. For example, once the
RAD is described, the Customer Account has been
identified as an outcome of the interactions, and the legal
and financial requirements (the rules) are determined, we
can state: We have an inert, design domain (Customer
Account) – created by the Customer and considered a
legal document (legal / financial rules). We, therefore,
have a Workpiece problem frame.

6. Discussion

This position paper outlines a way to derive
(appropriate) Problem Frames from process models. The
method is illustrated by describing the derivation of a
Workpiece frame from a Role Activity Diagram. It is
shown that although traditional mapping from business
processes to context diagrams might be viable, as an
intermediary step towards a problem frame, such a
mapping has potential pitfalls because important design
domains are often missed. Therefore, we can bypass this
step and consider the problem frames direct from the
process model. Key to eliciting further domains, vital to
the identification of the problem frames, is exploring the
interactions between roles for outcomes (potential
domains) and rules (potential requirements or contraints
governing use or control of the domains).

6.1. Further work and potential issues

Our goal is to provide a complete, formalised set of
guidelines to help determine problem frames from process
models. However, there are some ‘mapping’ issues to be
addressed.

Is it necessary for a complete mapping to be produced?
We are not saying that Role Activity Diagrams and PFs
are isomorphic, in the way UML sequence and
collaboration diagrams are. For example, it is likely that
in moving from the RAD to the PF, some information is
lost. When changes are made to the requirements some of
these may impact the business model, but (if they do not
concern the interfaces between the domains or the rules
governing the frame) the frames may be unaltered. Hence,

it may be necessary to consider a multiple mapping
among business model, problem frame and requirements.
Indeed, similar issues have been described among process
models, use cases and class diagrams [5].

This also brings into question whether a direct
mapping is most beneficial or whether it may be
necessary to use an intermediate notation. Again lessons
may be drawn from process modelling where notations,
such as POSD, have been used in this manner [2].

Finally, we note, that although well regarded, the
existing PFs are seen as a starting point, and that certain
contexts may yet suggest the need for further frames.

7. References

[1] P. Henderson, “Software Processes are Business Processes
Too”, Third International Conference on the Software Process,
IEEE Comp. Soc. Press, Reston, Virginia, USA, Oct 1994.
[2] K.T. Phalp, “The CAP Framework for Business Process
Modelling”, Information and Software Technology, 40 (13)
1998, pp. 731-744.
[3] Warboys, B, Kawalek, P, Robertson, I. and M Greenwood,
Business Information Systems, McGraw Hill, 1999.
[4] G. Abeysinghe and K.T. Phalp, “Combining Process
Modelling Methods”, Information and Software Technology,
vol. 39, num. 2, 1997, pp. 107-124.
[5] K.T. Phalp and K. Cox, “Guiding Use Case Driven
Requirements and Analysis”, 7th Int. Conf. on Object-Oriented

Information Systems, Springer, LNCS, Calgary, August 27th-
29th 2001, pp.329-332.
[6] Jacobson, I., Booch, G., and J. Rumbaugh, The Unified

Software Development Process, Addison-Wesley, 1999.
[7] Jackson, M., Problem Frames, Addison-Welsey, 2001.
[8] Kovitz, B., Practical Software Requirements, Manning,
1999.
[9] K. Phalp, and K. Cox, “Picking the Right Problem Frame -
An Empirical Study”, Empirical Software Engineering Journal,
2000, 5(3), pp. 215-228.
[10] Ould, M., Business Processes, Wiley, Chichester, 1995.
[11] Bray, I., An Introduction to Requirements Engineering,
Addison-Wesley, 2002.
[12] D. Bjorner, S. Koussoube, R. Noussi, and G. Satchok,
“Michael Jackson's Problem Frames: Towards Methodological
Principles of Selecting and Applying Formal Software
Development Techniques and Tools”, 1st IEEE Int Conf on

Formal Engineering Methods, IEEE Comp Soc Press,
Hiroshima, Japan, 12-14 November, pp. 263-270.
[13] J. Hall, M. Jackson, R. Laney, B. Nuseibeh, and L.
Rapanotti, “Relating Software Requirements and Architectures
using Problem Frames”, RE'02, IEEE Computer Society Press,
Essen, Germany, Sept 2002, pp. 137-144.
[14] K. Sikkel, R. Wieringa, and R. Engmann, “A Case Base for
Requirements Engineering: Problem Categories and Solution
Techniques”, REFSQ'2000, Stockholm, Sweden, 5-6 June 2000.
[15] Britton, C. and J. Doake, Software System Development: a

gentle introduction, McGraw-Hill, 1993.



97

A Requirements-based Framework for the Analysis of
Socio-technical System Behaviour

Jon G. Hall
Open University, Milton Keynes (UK)

Andrés Silva
Universidad Politécnica de Madrid (Spain)

Abstract

Requirements Engineering’s theoretical and practi-
cal developments typically look forward to the future
(i.e. a system to be built). Under certain condi-
tions, however, they can also be used for the anal-
ysis of problems related to actual systems in op-
eration. Building on the Jackson/Zave reference
model [2] for requirements and specifications, this
paper presents a framework useful for the preven-
tion, analysis and communication of designer and
operator errors and, importantly, their subtle inter-
actions, so typical in complex socio-technical sys-
tems.

1. Introduction

There are three system ‘dimensions’ that come
into play in the analysis of socio-technical systems:
these are system structure, system behaviour and
human-computer interaction. Many techniques for
the analysis and prevention of accidents in socio-
technical systems focus on only one or two of these
dimensions but not on all three at the same time.
However, it is well known that accidents combine
all three [1, 5].

In this paper we propose an analytical framework
for socio-technical systems. The framework is based
upon a dynamic view of the reference model (RM)
for requirements and specifications [2]. The formal
approach of the RM, complemented with the semi-
formal approach of Jackson’s Problem Frames [3],
provides a clear distinction between descriptions of
the world (or environment of the system) W , the
requirements R and the specifications S of a solution
machine. This specification S contains descriptions

expressed exclusively in terms of shared phenomena
between the machine and its environment. For a
machine to satisfy the requirements, W ∧ S |= R
must hold.

With the purpose of including the analysis of
system-operator interactions, our framework also
contains elements that resemble those of Norman’s
Mental Models [6]. However, Norman concentrates
on the design of the system in non-formal terms;
our location in mission- (including safety-)critical
systems requires reasoning capability above the ad
hoc. As with Norman, we work with three differ-
ent viewpoints: two mental (corresponding to de-
sign and operating stakeholders), one physical (the
system in operation). Those stakeholders can hold
discrepant views of W,S, R [8] that, through their
interactions, can lead to undesirable physical situa-
tions. Our intention is to place stakeholders within
the same spatio-temporal framework to allow proper
analysis of them and the physical system individu-
ally and severally. Although we admit design and
operating teams, throughout this paper we use the
singular, for consistency.

2. Designer and operator viewpoints

Our framework is summarised in Figure 1 which
should, initially, be seen as three concentric squares.
We explain, first, the middle square, corresponding
to the actual physical execution of the system. Ac-
cording to the reference model, the system “moves”
the environment from a state described by W at
time t (abbreviated to W t in the figure) to a state1

at t+1 (W t+1, which, ideally, satisfies requirements
R), as indicated by the mapping W t → W t+1.
This step is decomposed into three: (i) a “sensor”

1We assign unit time to the change for simplicity only, it
could, in fact, be any delta.



98

step: the state of the world is input to the soft-
ware (W t → St), (ii) a software step: the software
produces output from its input (St → St+1) and
(iii) the “actuator” step: the software output ef-
fects some change in the world (St+1 →W t+1). The
other squares correspond to the views of our iden-
tified stakeholder: outermost the operator’s view
(subscript o); innermost the designer’s view (sub-
script d). In this way, we enable the systematic
forwards or backwards analysis of any discrepan-
cies between the operator’s and designer’s views of a
step (or sequence of steps) and/or the actual step(s)
that took place.

A delta expression (shown in the in the figure as a
decorated ∆, i.e. ∆SW

o ) represents the gap between
the operator’s view of a step and the step itself. So,
for instance, ∆SW

o represents the operator’s view of
an “actuator” step against reality. Discrepancies in
a step can either be in the step itself, or derived from
discrepancies between actual states and designed or
perceived ones. This second class of discrepancies
we label with decorated Xs.

S

W

S

Operator model (at operation time)

Intended behavior (at design time) 

W

W W

S S

S

WW

S

Actual behavior (at operation time)

∆S

d

∆S
d

W

∆

d

W

∆W
d

S

∆

o

W

∆S
o

∆S

o

∆W

o

S

t+1

t+1

t+1

t

t

t

o

oo

o

dd

d d

t+1

t

t

t

t+1

t+1

W

X

d

X

d

X

d

X

d

X

o

X

XX

o

o

o

Figure 1. Resume of the framework

One of the immediate advantages that our frame-
work provides is its taxonomic capability. For ex-
ample, from the delta expressions, operator errors
can be classified into one of:

∆W
o the operator misconstrues an environmental

step;

∆SW
o the operator misconstrues an actuator step;

∆S
o the operator misconstrues the sensor/actuator

linkage;

∆WS
o the operator misconstrues an sensor step.

This is a more granular and detailed view of Nor-
man’s mental model (mis)constructions [6]. Also,
similar taxonomies exist for misconstrued states
(the X’s) and for design errors (the ∆d’s), not
shown here for reasons of space.

3. Case study: the chemical reactor

This section shows, through a real-world example,
how our framework may be used in the analysis
of the chemical reactor explosion [4]. The require-
ments for a chemical reactor, a schematic for which
appears in Figure 2, included the clause that when
a component in the plant reported a problem, the
software should send a warning message to the op-
erators and stop executing. On one bad day, the
operator sent an order to the software to open the
catalyst (with the aim of increasing the output of
the reactor). The program was instructed to, first,
open the catalyst and, second, open the flow of cool-
ing water, to regulate the reaction. An accident
occurred when a component gearbox reported low
oil levels to the software, just after opening the re-
actor, causing the software to stop. As a conse-
quence, opening the cooling water was never per-
formed. The temperature of the reactor increased
resulting in an explosion.

Reactor

Cooling waterComputerGearbox

CondenserCatalyst

Figure 2. Chemical reactor schematic

For our analysis, we will use a formal approach, re-
lated to individual traces of behaviours in, respec-
tively, the real world (i.e., the actual behaviour), the
designer’s view and the operator’s view. However,
less formal approaches could also be used under our



99

framework (for example, based on problem frame
concerns[3]).

In the simplest of safety and liveness terms, the sit-
uation {catalyser open,¬water open} should never
occur. Figure 3 represents, step by step, the se-
quence of events. Analysis goes backwards in time,
from top to bottom. The three columns represent
the designer’s view, the actual events and the op-
erator’s view of those events. States are shown in
angle brackets, where shared phenomena are under
the line.

There is a Xd difference, shown at the top of the fig-
ure, between the (actual) hazardous state and the
state envisioned by the designer. If we trace back in
time the sequence of events we find that, previously,
in the St+1 state, there are some differences but
there are no differences in the previous one (St). So
it is in this St → St+1 step where a ∆S

d actually hap-
pened (i.e., the software did not achieve its intended
action, even when sensors, actuators and the oper-
ator behave correctly). Analyzing this step, what
we find here is a design decision that proved to be
wrong: the atomicity of the operations of opening
the catalyser and the water when, actually, the wa-
ter was never opened, as the second column shows.

Please note that our framework would admit an al-
ternative analysis if the designers view ignored the
possibility of unit needs service in W t. In this
case, a difference would appear in the W t stage,
indicating that an expectation Xd of the designer
was wrong, but at the end, the conclusion would be
the same: the program has been poorly designed.

The actual behaviour of the world, machine and op-
erator is expressed by the relation |= on the W , S
and R rules, where

R if (catalyser open) then water open
if (unit needs service) then (warn operator; STOP )
if (req catalyser open) then catalyser open

S if (opencsen) then (opencact; openwact)
if (req servicesen) then (warn operatoract; STOP )

W if (opencact) then catalyser open
if (warn operatoract) then warn operator
if (openwact) then water open
if (unit needs service) then req servicesen

if (request catalyser open) then opencsen

This model satisfies the RM in the sense that W ∧
S |= R holds2. On the other hand, the designed

2The reader can check this by chasing round Figure 1 the

behaviour (Wd, Rd and Sd) differs from this model.
Although Wd = W and Rd = R, S changes to:

Sd if (opencsen) then [opencact; openwact]
if (req servicesen) then (warn operatoract; STOP )

where [a; b] indicates that a followed by b should
be atomic, i.e., that no event should come between
their occurrence. Similarly, rules and relation |=o

could be provided for the operator; however, due
to the informality of the operator (it is a biddable
domain in Jackson’s terms[3]) we prefer to analyse
it informally as follows:

Referring back to Figure 3, from the point of view
of the operator the first departure from actual be-
haviour happens in W t: the operator ignores that,
at the same time he is requesting the catalyzer to
open, the gearbox signals a request for service. The
operator continues, under the assumption that there
is no abnormal behaviour, and is therefore never
aware of the hazard, as can be seen in the W t+1

row. Although it is not “the solution”, this suggests
that a proper feedback mechanism for the gearbox
request for service is missing.

Although we have been able to present only a sim-
ple analysis, we claim that our framework has the
potential to raise awareness about many real de-
sign and operator errors as well as suggesting so-
lutions by which they can be avoided. To support
this claim, consider for instance, the long sequence
of ¬water open facts without the operator being
aware of it, even after his request was made. The
analyst could ask why this happens, if it has some
importance or not, and how can be avoided in future
designs. Also, an analysis of mixed causes (inter-
mingled design and operator errors) can be done,
like when even subtle design errors lead to wrong
information in a display that lead the operator into
taking a bad decision [5].

4. Conclusions and Further Work

We have presented a framework into which many
aspects of socio-technical systems fit, and within
which their interrelationships become clear. With
its strong foundations in the reference model, from

sequence of events.



100

Designer Actual Operator

W t+1 :

〈 catalyser open
water open

warn operator

STOP

〉
Xd←→

〈 catalyser open
¬water open

warn operator

STOP

〉
Xo←→

〈 catalyser open
water open

warn operator

STOP

〉

↑ ∆SW
d⇐====================⇒ ↑ ∆SW

o⇐====================⇒ ↑

St+1 :

〈 ¬catalyser open
¬water open

opencact

openwact

warn operatoract

〉
Xd←→

〈 ¬catalyser open
¬water open

opencact

warn operatoract

STOP

〉
Xo←→

〈 ¬catalyser open
¬water open

opencact

openwact

〉

↑ ∆S
d⇐====================⇒ ↑ ∆S

o⇐====================⇒ ↑

St :

〈 ¬catalyser open
¬water open

opencsen

req servicesen

〉
Xd←→

〈 ¬catalyser open
¬water open

opencsen

req servicesen

〉
Xo←→

〈 ¬catalyser open
¬water open

opencsen

〉

↑ ∆W S
d⇐====================⇒ ↑ ∆W S

o⇐====================⇒ ↑

W t :

〈 ¬catalyser open
¬water open

req catalyser open
unit needs service

〉
Xd←→

〈 ¬catalyser open
¬water open

req catalyser open
unit needs service

〉
Xo←→

〈 ¬catalyser open
¬water open

req catalyser open

〉

Figure 3. Analysis of the chemical reactor accident

a safety engineering point of view, we aim in further
papers to show how widely used techniques (fault
tree analysis (FTA), HAZOP and Event Tress (ET),
for instance) can be embedded within our frame-
work. For instance, our Framework provides the
means to structure FTA analysis as, in FTA, the
backward chaining sequence from the root of the
tree (the hazard) can be guided by stepping back-
wards in the cycle shown in Figure 1. For each step,
the operator and designer view can be interleaved
to study their interactions, improving former pro-
posals like [1]. In HAZOP, on the other hand, our
framework provides a general structure for HAZOP
meetings [7]. In this way, HAZOP keywords can be
applied to each small step in the cycle, both from
a designer point of view and/or from an operator
point of view. A similar argument can be provided
with regard to ET or other techniques. In this way,
our framework provides a coherent view that under-
lies hazard analysis techniques, also integrating the
interaction between operator and design errors.

This framework provides the basis of our future
work, whose mission is to bring a complete and co-
herent view of the misbehaviours in socio-technical
systems. Another approach we are exploring is the
potential use of our framework for storing and dis-

tributing accident-related information.

References

[1] C.F. Fan and Chen W.H. Accident sequence analysis of
human-computer interface design. Reliability Engineer-
ing and System Safety, (67):29–40, 2000.

[2] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave.
A reference model for requirements and specifications.
IEEE Software, 17(3):37–43, 2000.

[3] M. Jackson. Problem Frames: Analyzing and structuring
software development problems. Addison-Wesley, 2001.

[4] T. Kletz. Computer Control and Human Error. Institu-
tion of Chemical Engineers, 1995.

[5] N. Leveson, L. D. Pinnel, Sandys S.D., S. Koga, and
J.D. Reese. Analyzing software specifications for mode
confusion potential. In 1st ACM SIGSOFT Symp. on
the Foundations of Software Engineering, Dec. 1993.

[6] D.A. Norman Cognitive Engineering. In D.A. Norman,
S.W. Draper, User Centred System Design. LEA Asso-
ciates, New Jersey, 1986.

[7] F. Redmill, M. Chudleigh, and J. Catmur. System Safety:
HAZOP and Software HAZOP. Wiley, 1999.

[8] A. Silva. Requirements, domain and specifications: A
viewpoint-based approach to requirements engineering.
In International Conference on Software Engineering
2002 (ICSE 2002), 2002.



101

 
The Simulator  Another  Elementary Problem Frame  

 
Ian K Bray 

Bournemouth University 
ibray@bournemouth.ac.uk 

 

 
Karl Cox 

CSE, University of New South Wales,  
National ICT Australia  
karlc@cse.unsw.edu.au

  
Abstract 

 
Problem framing is recognised as an important new 

technique for describing the problem context in order to 
identify and then apply the most appropriate modelling 
and description techniques to developing different kinds 
of software system. ackson has proposed five distinct 
problem frames and variants on them. owever, 
ackson makes no claim that this is an exhaustive list. 

In order to better model certain problem domains, an 
addition to the published set of elementary problem 
frames is proposed. We present the Simulator problem 
frame and describe through example why the Simulator 
is not solely a variant of the other frames and should be 
considered a problem frame in its own right.  

 
1. Introduction 

 
Since being proposed by Michael Jackson [1], 

problem frames have been recognised as having great 
significance for the development of software systems. 
As David Garlan observes [5], “Understanding and 
using problem frames will likely become an essential 
skill of all good software system designers". 

The approach is grounded upon fitting problem 
frames to the given problem domain  the closer the fit, 
the greater the advantage that may accrue. 

Jackson originally identified five elementary 
problem frames  workpiece, control, information, 
connection and transformation. As has been illustrated 
in several works (for example, [2], [3]) more complex 
problems can, generally, be fitted to composite frames 
composed of two or more interacting, elementary 
frames. Whilst Jackson explicitly made no claim to 
have identified all the elementary frames, as far as is 
known, to date, no others have been added. However, to 
better fit a particular class of problem, an additional 
frame is now proposed. 

 
2. Problem frames and Requirements 
practice 
 

Methodologists often suggest that general methods 
are better than specific and the “one size fits all” notion 
is superficially attractive. However, it is flawed  as 

Jackson [1] puts it, “the value of a method is inversely 
proportional to its generality”. Use cases, for instance, 
might well prove useless for describing the functionality 
of a simulacrum. 

Nonetheless, enormous effort gone into trying to 
wrap one "standard" approach around all problems and 
the uptake of general methods is widespread. 
Meanwhile, little effort has gone into assessing the 
effectiveness of applying specific problem frames to 
particular problems and there is a currently lack of 
published evidence. In the only empirical study 
conducted on problem frames thus far, Phalp and Cox 
[8] show that it is relatively straightforward to determine 
single problem frames but less easy to determine the 
frames (and their respective weightings) for multi-frame 
problems. There are, as far as we are aware, no 
published industrial case studies, of the application of 
problem frames. However, given a free choice of 
methods, many of our students adopt this approach in 
their final individual and group projects. (Indeed, one 
such project sowed the seed for this paper.) 
  
3. The simulator problem 
 

This class of problem is characterized by the 
construction of an artifact (a realised domain) which 
exhibits behaviour that, to a required degree, mimics the 
inherent behaviour of some dynamic, real world original. 

The simulation bears some resemblance to an 
external reality but this is established only through the 
requirements  there is no communication (no phenomena 
are shared) between the original and the simulation 
during operation. Even so, the original should not be 
ignored, it is central to the problem and investigation and 
description of the original would be a vital element of 
the requirements engineering. 

The problem frame may be pictured as in figure 1. 

 

original 

simulacrum simulator

required 
behaviour

Figure 1 



102

The original is a “real world” domain. It is 
suggested that the original must be dynamic (or it 
would have no behaviour to simulate) but that is the 
only constraint1. In particular, it may be controllable or 
autonomous. The required behaviour will, clearly, be 
based upon the inherent behaviour of the original but 
(as illustrated in the following examples) it is likely that 
there will be approximations or simplifications.  

The simulacrum is the realized domain which 
behaves in accordance with the required behaviour. It is 
an embodiment of the selected event responses and 
exists only within the simulator, the configured 
machine that brings about the desired behaviour of the 
simulacrum. 

The simulator frame is likely to be used in 
conjunction with other frames. In particular, although it 
could be trivial, an information system may well be 
required in order to view the state of the simulacrum. 
(This is akin to the simple workpiece frame requiring 
an information system to provide feedback [5], page 
98.) It is also possible for the inherent behaviour of the 
simulacrum to be controlled by an associated control 
frame. However, these associated frames are optional  
the simulator can stand alone and this prohibits its 
classification as a partial frame. 

 
4. Examples 
 

Consider a simulation of a planetary system. The 
original has certain properties (mass and orbital period 
of bodies etc.) which can be detailed in a problem 
domain description. The requirements will state with 
what degree of fidelity the simulation should mimic the 
original. There will inevitably be some inexactitude and 
one might, for example, elect to treat the bodies as point 
masses and constrain movement to a single plane. 

Once implemented, the simulation should comply 
with the requirements. However, during its operation, 
the model does not communicate (share phenomena) 
with the original and at any time, the state of the model 
may be very different from that of the original. 

A second example concerns the simulation of ocean 
waves. The problem domain description would detail 
such matters as the propagation and decay of actual 
waves. The requirement would specify how closely the 
simulation must mimic these characteristics and the 
implementation should comply with those 
requirements. 

The simulation could be used to make predictions 
about maximum wave heights, to provide test 
conditions for (simulations of) boats or simply as a 

                                                
1 There may be some argument as to whether a model 
of a static domain (for example, a road in a traffic 
simulation) constitutes a simulation in its own right. 

piece of art. In none of these cases, however, does the 
simulation communicate (share phenomena) with the 
original or represent any actually occurring state of the 
original. 

Thousands of examples of simulation problems 
appear in the literature, these include: 

simulation of chemical etching 
simulation of buildings (for earthquake research) 
simulation of vehicles and drivers (as part of a 
driver training environment) 
simulation of electronic circuits 
simulation of brewery fermentation (as a test rig for 
a new brewery controller) 

 
5. Differences from other frames 
 

The simulator shares certain characteristics with 
other elementary frames but has particular features 
which justify its separate classification. In part, the 
differences hinge upon the distinction between inherent 
behaviour and controlled behaviour. The inherent 
behaviour of a domain is a given. It is not open to 
negotiation but may be described more or less correctly. 
A complete description of the inherent behaviour of a 
domain encompasses all its possible behaviours. Bjorner 
et al. [4] define this in terms of a basis function which 
determines the range of its observable variables. 

The simulator seeks to approximate the inherent 
behaviour of the original. If it is possible and desirable to 
impose a controlled behaviour over the inherent 
behaviour, this would be the subject of a separate 
(control) frame. 

Jackson [5], page 339, offers a ranking of problem 
frames in terms of their “depth in the world outside the 
computer”. This ranking runs from the transformation 
frame (the shallowest) to the control frame (the deepest) 
and may be viewed in terms of the degree of binding 
between the machine and the real world. Within this 
scheme it is suggested that the simulator problem fits 
between the workpiece and the information frame  the 
behaviour of the simulacrum is based upon some real 
world original (which, therefore, requires study) but 
during operation, there will be no communication 
between the simulator and the original. 

 
6. hy isn t it a workpiece problem  

 
Both workpiece and simulator contain a realized 

domain (artifact). In the workpiece case, the realized 
domain is necessarily inert and it changes subject only to 
the whim of an editor. The simulacrum can be self 
modifying and is constrained by requirements that 
establish, to a greater or lesser degree, some mimicry of 
an external reality. 



103

An inert domain may be simulated but, in the 
absence of any stimuli, will do nothing. It is hard to 
imagine the circumstances under which the simulation 
of an inert domain would, of itself, be worthwhile. 

An inert domain simulation could, however, have a 
role as a partial frame. It would embody the event 
responses that would allow some other machine to exert 
control over the simulacrum. This approximates to the 
decomposition of the workpiece problem into two 
partial frames  a simulator and an “editor”. 

However, there remains a difference in that, with 
the simulator, there does exist an external original 
which, through the requirements, imposes constraints 
upon the behaviour.  

Furthermore, the simulator has a far greater range  
spontaneous and, even, autonomous domains may be 
simulated. Even in the absence of any external stimuli, 
such domains may “freewheel” and continually exhibit 
behaviour. The bodies in the planetary simulation, for 
example, continue in their orbits without the need for 
any external stimulation and, in a brewery simulation, a 
vat of wort will continue to ferment if left alone.  

 
7. hy isn t it an information problem  
 

An information system provides information about 
some reality. In order to do this, the information system 
will frequently contain a model of that reality (what 
Jackson refers to as the Dynamic Model, Partial Frame 
[6]). However, in that case, the correspondence between 
the reality and the model must be maintained (within 
acceptable limits) during the operation of the 
information system. 

This is not the case with a simulator. At any given 
time, the state of the simulacrum need have no 
correspondence with the state of the original. It follows 
that the simulator frame diagram shows no connection 
between the original and the simulator  there is no 
communication, no shared phenomena. For example, a 
vehicle in a traffic simulation may crash but this 
certainly does not mean that any original has crashed. 

In practical terms, correspondence between the 
simulacrum and the original is determined only by the 
requirements  there is no updating of correspondence at 
run-time. That said, a simulation could form a partial 
frame in support of an information system if its purpose 
were to help derive reports about the actual state of the 
original and if there were some mechanism for ensuring 
an ongoing correspondence with the original. But this 
need not be the case. 
 
8. hy isn t it a control problem  
 

The control problem is characterised by the machine 
exerting control over some external reality.  

In the case of the simulator, the external reality (the 
original) is not controlled (not even connected). There 
could, of course, be an associated control system for 
which the simulacrum is the reality. This could be 
depicted as below (figure 2), but the simulator and the 
controller are separate systems. This situation commonly 
occurs where a simulator is built in order to provide a 
test environment for a control system (without any risk 
of accident cause by defective control of the original). 

 
However, a telling fact is that it is possible to 

simulate an autonomous domain (such as a weather 
system) which, by definition, cannot be controlled. 

Even where control is possible, it is not necessary to 
have any planned control. Simulators for two or more 
systems could be interconnected such that each provides 
stimulation for the other and, without any requirements 
for controlled behaviour, they could be left to interact 
and their emergent behaviour can simply be observed. 
Certain simulations of evolving systems fit this pattern. 

 
9. Is the Simulator a lexical domain in 
disguise  

 
Jackson [5] describes a lexical domain as a "physical 
representation of data - that is, of symbolic phenomena" 
(p84). The lexical domain combines a mix of causal and 
symbolic phenomena. Because of this necessity for 
causal phenomena and its need to change the state of 
data in the domain of interest, we can say that a lexical 
domain interacts with the problem entity it is 
representing. However, the simulator does not interact 
with its original entity in any way. It does not change the 
state of its real world representation. It only mimics it or 
simulates behaviours beyond the capability of its original 
counterpart. 

 Jackson also presents another point of view that a 
lexical domain does not need to be causal, but that it is 
just "a structure of symbolic phenomena" (p84). For the 
Simulator frame, the lexical domain could be the 
combination of the simulacrum and the simulator 
machine. This lexical domain would then represent the 
original real world domain. However, since the original 

original 

simulator
shared 
behaviour 

controller behaviour 
rules

simulacrum 

controlled 
domain 

Figure 2 



104

domain is, necessarily, dynamic (e.g. controllable or 
autonomous) and lexical domains are often static 
representations of data, we argue that the simulator has 
particular qualities that distinguish it from a typical 
lexical domain. With the advent of machine 
learning/genetic algorithms and AI, there is no reason 
to suppose that the simulator will never go beyond the 
capabilities and behaviours of the original domain 
(perhaps to explore ways in which to enhance the 
original). For instance, in the simulation of fault 
tolerance of house safety structures under extreme 
conditions such as an earthquake or a tornado. To await 
an actuall tornado or earthquake to assess the 
effectiveness of the building materials or architecture 
would be impracticable. 
  
10. The fantasy problem frame 

 
A further possibility is that, within a simulation, the 

original is imaginary. This situation occurs with certain 
games, computer animations and the like. 

An imaginary object, for example, a dragon, is 
endowed with certain behaviour and a machine is 
constructed that exhibits that behaviour. As before, it is 
quite possible that there will also be a connected system 
that provokes the simulation (with or without the aim of 
evoking a certain desired behaviour). 
 

11. Conclusions and further work 
 

Any development that allows closer fitting of 
problem frames to problem domains should prove 
advantageous and the proposed new frame appears to 
offer the possibility of achieving a better fit for certain 
types of problem. 

Development of case studies will allow further 
investigation. In particular, the nature of the various 
domains can be more precisely determined and 
checklists (along the lines of those provided in [3], page 
82 and in [7] page 103) for the investigation and 
documentation of the problem can be developed. 

We are currently (through our students) exploring 
the efficacy of the problem frame approach and are in 
the process of beginning new industrial liaisons both in 
the UK and Australia where we plan to evaluate the 
problem frames in a variety of different industries. With 
the rapid growth of simulation modelling, for instance as 
software process simulation and modelling (e.g. the 
ProSim workshops [9]), through leisure activities [10] to 
safety critical assessment, for example, a simulation of 
docking a Space Shuttle to a space station [11], it is 
absolutely imperative to be able capture all the necessary 
domain elements of the problem. For simulation 
problems, the simulation frame is a definitive place to 
start. 
 

References 
[1] M. A. Jackson, “Requirements & Specifications: A Lexicon of Software Practice, Principles and Prejudices”, Addison 
Wesley, 1995. 
 
[2] D. Jackson and M. A. Jackson, “Problem Decomposition for Re-use”  Software Engineering ournal, Volume 11, Number 1 
pages 19-30, January 1996. 
 
[3] B. Kovitz, “Practical Software Requirements  A Manual of Content and Style”, Manning, 1999. 
 
[4] D. Bjorner et al., “Michael Jackson’s Problem Frames: Towards Methodological Principles of Selecting and Applying Formal 
Software Development Techniques and Tools”  ICFEM 97: Intl. Conf. on Formal Engineering Methods , iroshima, apan, pages 
263-271, Los Alamitos, CA, USA, 12-14 November 1997 
 
[5] M. A. Jackson, “Problem Frames: Analyzing and Structuring Software Development Problems”, Addison Wesley, 2001. 
 
[6] M. A. Jackson, “Problem Analysis Using Small Problem Frames”, South African Computer ournal, Volume 22, pages 47-
60, March 1999 
 
[7] I. K. Bray, “An Introduction to Requirements Engineering”, Addison Wesley, 2002. 
 
[8]  K. Phalp, and K. Cox, "Picking the Right Problem Frame - An Empirical Study", Empirical Software Engineering ournal, 
2000, 5(3), pp. 215-228. 
 
[9]  ProSim - Software Process Simulation and Modelling International Workshop Series, 
http://www.prosim.pdx.edu/prosim2003/index.htm 
 
[10]  The Sims computer games series, Electronic Arts Games. 
 
[11]  NASA, Smart Systems Research Lab, http://ssrl.arc.nasa.gov/techsim.html 
 



105

A Reuse-Based Approach to
Determining Security Requirements

Guttorm Sindre
1
, Donald G. Firesmith

2
, Andreas L. Opdahl

3

1 Dept Computer & Info. Science, Norwegian U. Science & Technology
(on leave at Dept MSIS, Univ. Auckland, New Zealand)

2 Software Engineering Institute
3 Dept of Information Science, U. of Bergen, Norway

guttors@idi.ntnu.no, donald_firesmith@hotmail.com, andreas@ifi.uib.no

Abstract

The paper proposes a reuse-based approach to
determining security requirements. Development for reuse
involves identifying security threats and associated
security requirements during application development
and abstracting them into a repository of generic threats
and requirements. Development with reuse involves
identifying security assets, setting security goals for each
asset, identifying threats to each goal, analysing risks and
determining security requirements, based on reuse of
generic threats and requirements from the repository.
Advantages of the proposed approach include building
and managing security knowledge through the shared
repository, assuring the quality of security work by reuse,
avoiding over-specification and premature design
decisions by reuse at the generic level and focussing on
security early in the requirements stage of development.

1. Introduction

Use cases [1-3] have become popular for eliciting
requirements [4, 5]. Many groups of stakeholders turn out
to be more comfortable with descriptions of operational
activity paths than with declarative specifications of
software requirements [6]. As use cases specifically
address what users can do with the system, they are most
relevant for functional requirements. But lately the
application of use cases has also been investigated in
connection with security and safety requirements, in the
form of misuse cases [7-13], a.k.a. abuse cases [12, 14].

Misuse cases describe interactions that cause harm to
the system or its stakeholders and can be used as an
informal front-end to more formal security requirements
engineering. A closely related topic of research is that of
security use cases [15]. Like misuse cases these describe
interaction sequences where harm is attempted, but unlike

misuse cases, the system ends up preventing or at least
mitigating the damage.

In spite of the growing research interest in misuse
cases, and promising early applications [10, 11, 13], the
approach has yet to be put into large-scale industrial use.
Many software development organizations tend to put
little focus on security requirements, even if these are
increasing in importance [16]. Partly, this may be due to a
lacking understanding of security requirements. Indeed,
even when they attempt to write security requirements,
many developers tend instead to describe design solutions
in terms of protection mechanisms, rather than making
declarative statements about the degree of protection
required [17]. Another reason for neglecting security
requirements may be a perceived shortage of time in
projects with narrow deadlines. For instance, case studies
[18, 19] showed that security requirements were poorly
addressed in several e-commerce projects.

To make misuse case analysis more appealing to
practitioners reuse may be essential – as security
requirements could then be specified more rapidly. As
pointed out already in the 80’s, reuse of requirements
could lead to significant savings in development time and
cost [20]. Although requirements reuse has attracted some
research attention since then, methods suggested from
academia have failed to demonstrate practicality or
scalability [21] – perhaps with the exception of types of
development particularly suited for reuse, such as product
family development [22, 23] or ERP systems
implementation [24].

The purpose of this paper is to provide a reuse-based
methodology for misuse case analysis and the subsequent
specification of security requirements. There are two key
processes in reuse-oriented development [25, 26]:

• Development for reuse, where reusable artifacts
are developed and made available for future



106

reuse, for instance in a repository / library that
facilitates easy retrieval.

• Development with reuse, where end-user
applications are developed, partly by reusing
artifacts created by the “for” process.

There are interconnections between these two
processes. Development with reuse can discover
weaknesses of existing components in the reuse
repository, or inspire new ideas for reusable components.
Development for reuse can steer development with reuse
if you are in a position to choose between alternative
projects, picking the one where you have the greatest
potential for reuse. The rest of this paper is structured as
follows: Section 2 deals with development for reuse,
discussing what kinds of artifacts should be developed,
how the reusability of these artifacts should be ensured,
and how the artifacts should be packaged in a repository
for future reuse. Section 3 then addresses development
with reuse, discussing how to identify candidates for
reuse and then adapt them to the specific application.
Section 4 discusses related work, and section 5 makes a
concluding discussion.

2. Development for Reuse
Reuse of systems development artifacts may improve

the quality of development processes and products and
may reduce development costs if each artifact is reused at
least 3–4 times (because it is more expensive to develop
something reusable than something which will be used
only once [27].) To ensure repeated reuse of security
threats and requirements, we must find good answers to
the following questions:

1. Which development artifacts should be stored in
the repository for reuse?

2. How should the repository be organized to best
support reuse?

2.1 The reusable development artifacts
As mentioned in the Introduction, applications are

likely to face the same kinds of threats and have similar
categories of required security even if they have different
functional requirements. The challenge for reusability will
be to describe threats and requirements on a sufficiently
generic level, so that detailed differences between
applications (e.g., in functionality, architecture) do not
hamper the possibility for reuse. On the threats and
requirements level, we suggest these types of reusable
artifacts:

• Generic threats, described independently of
particular application domains. Here we will only
look at threats described as misuse cases, but

other forms of representation could also be
envisioned.

• Generic security requirements, again described
independently of the particular application
domain. These can be represented as security use
cases or “system shall” requirements.

• Application-specific threats and requirements.
Apart from including application-specific
terminology, these can be described by misuse
cases and security use cases (and/or “system
shall” requirements) respectively, much similar to
the generic varieties.

In addition to this, there could have been links further
on to design level specifications, test cases etc.,
integrating reuse efforts across more phases, but this is
not explored in our work so far.

For an example of a generic threat, Table 1 shows a
generic misuse case that represents the threat of spoofing,
i.e., a misuser gaining access to the system by pretending
to be a legitimate user. This is a highly reusable misuse
case, covering many different spoofing attacks. It does not
matter if authentication is done by username+password,
card+PIN, fingerprint scan, voice recognition, human to
human recognition of individuals or something else. The
interaction sequence is inspired by essential misuse cases
[2], which focus on the users’ intentions rather than
concrete actions. In [2] the main motivation for this is to
simplify the interaction and avoid premature design
decisions, but avoidance of premature design will also
increase the reusability of the description.

Table 1: A generic misuse case

Generic Misuse Case: Spoof User Access
Summary: The misuser successfully makes the system
(physical / human / computerized) believe he is a legitimate
user, thus gaining access to a restricted system / service /
resource / building.
Preconditions:

1) The misuser has a legitimate user’s valid means to identify
and authenticate OR

2) The misuser has invalid means to identify and authenticate,
but so similar to valid means that the system is unable to
distinguish (even if operating at its normal capabilities) OR

3) The system is corrupted to accept means of identification
and authentication that would normally have been rejected.
The misuser may previously have performed misuse case
“Tamper with system” to corrupt the system.

Misuser interactions System interactions

Request access / service
Request identification and
authentication

Misidentify and
misauthenticate

Grant access / provide service
Postconditions:
1) The misuser can do anything the legitimate user could

have done within one access session AND
2) In the system’s log (if any), it will appear that the system

was accessed by the legitimate user.



107

For an example of a generic requirement, Table 2

shows one path of the security use case “Access Control”,
more specifically the one requiring the system to reject
misusers with valid means of identification but invalid
means of authentication.

Table 2: One path of a generic security use case

Generic Security Use Case: Access Control
Path name: Reject invalid authentication

Preconditions:
Misuser has valid means of user identification but invalid
means of user authentication.

System RequirementsMisuser
Interactions System

Interactions
System Actions

Request user
identity and
authentication.

Provide valid user id
but invalid
authentication.

Reject misuser
by cancelling
transaction.

Attempt
identification,
authentication &
authorization.

Postconditions:
1) Misuser has valid means of user identification but invalid
means of user authentication AND
2) Misuser not authenticated, not granted access AND
3) Access control failure registered.

Just like the generic misuse cases, this generic security
use case is highly reusable – it makes no design
assumptions, and neither does it presuppose any particular
application domain. Access control is a feature wanted in
a wide range of applications. The above use case could be
a representative requirement for accessing an ATM, an
internet entertainment service, or a missile control system.

This example may seem ridiculously simple – which it
also is. But remember that this is just one of several paths
of the security use case, and that the total response to the
threat would encompass more than just one security use
case. For the particular example threat “Spoof user
access” the repository might contain:

• The security use case “Access Control”, with
several paths (more examples are shown in [15]).

• Other security use cases or normal use cases
describing security related functions, e.g., “Cancel
means of authentication”)

• Requirements described by other means, e.g.,
“system shall” requirements or mitigation points in
misuse cases [8].

Several alternative means of representation will be
necessary here, as security use cases do have some
limitations:

• They are easy to express when the threat is
mitigated during the attempt (in the interaction
path), not so easy for mitigations relating to the
preconditions or postconditions of the threat.

• The are most easy to express for “absolute”
requirements. But in many situations a 100%
secure solution is impossible or infeasible. It can
be noticed that it does not make sense to include
a path in the Access Control use case for the
situation where the misuser has valid means of
identification and authentication, since then – to
the system – the misuser is the legitimate user,
and the system cannot be required to do anything
else than it normally does, namely granting
access.

Examples of other requirements that might be
suggested as a response to the spoofing threat:

• “The means of authentication should have a
stealability index value of [value]”1.

• “Upon issue, the user shall sign a contract obliging
him to keep the means of authentication safe from
misuse, and to report potential compromise within
[time limit]”

• A use case “Cancel Means of Authentication”, to
be applied when users report possible theft or loss
of their means.

• “The [user] shall be limited to [maximum action]
per [session / time period / …]”

The latter example, with 3 [ ] brackets, may seem so
vague that one might wonder whether it has any utility in
a reuse repository. But it does serve to remind the
stakeholders of a certain mitigation option that could
otherwise easily be forgotten. An example of an
instantiation will be shown in the next section.

2.2 The organisation of the repository
A meta-model showing Threats and Security

Requirements and the links between them is given in
Figure 1. Threats are what misusers try to achieve,

causing harm to the system, and security requirements
describe the extent to which the system shall be able to
mitigate those threats. Key to understanding the diagram
are the two classes on the way from Threat to Security
Requirement, namely Threat-Requirement Relationship
and Security Requirement Bundle. To start with the latter,
this is a set of requirements that pull together in
mitigating the same threat. It is often interesting to look at

1 This assumes the definition of a (yet non-existing) stealability
index for means of authentication, similar to what exists for
cars. Clearly, less precise statements like ”The means of
authentication shall be difficult to steal” are not useful as
requirements.



108

such bundles rather than just individual requirements,
because:

• A security requirement bundle is a bigger and
more effective unit of reuse. To the extent that one
requirement is a good unit of reuse, it is still
possible to define a bundle consisting only of that
requirement.

• In many cases, single security requirements
provide little or no protection unless accompanied
by other requirements. For instance, as observed
in [17] identification requirements are seldom of
much value alone – in most cases they must be
accompanied by authentication requirements.

Indeed, it can be observed that a security use case is in
itself a requirement bundle. The example in Table 2

already contains two requirements – a) that the system
shall reject access to users without valid means of
authentication, and b) that failed access attempts shall be
registered. And this is only one path of the bigger use
case, so in total it would encompass several requirements.

The Threat-Security link objects will most commonly
represent “mitigate” relationships, i.e., that a certain
requirement bundle (e.g., the security use case “Access
Control”) mitigates a threat (e.g., the misuse case “Spoof
User Access”). Another possible relationship is
“aggravate”, i.e., the choice of a requirements bundle may
actually increase the risk for a threat. An example is that a
bundle of Access Control requirements might increase the
risk for Denial of Service (DoS) threats. A classical
example is the suspension of console login for a certain
user after three failed login attempts – a misuser could
then deny access for that user simply by making those
three failed login attempts with that username. In general,
any requirement that the system should suspend access if

sensing an attempted attack might be utilized for DoS
purposes.

The Requirement-Requirement Relationship is used to
register relationships between requirements, e.g., that they
may be overlapping or in conflict. The aggregation from
Threat to Threat Specification enables one threat to have
several parallel representations in terms of format or
language. For instance, the same misuse case could be
written both in English, French and Norwegian, or in the
same language but with different templates, or there could
also be other representations than misuse cases, for
instance in more formal languages (not investigated in
this paper). The upper right part of the diagram shows an
analogous modeling of the requirements side.

The lower left part shows that a Threat can either be a
Generic Threat or an Application-Specific Threat, and one
Generic Threat may have many Application-Specific
instantiations. For instance, the “Spoof User Access”
threat of Table 1 may be instantiated to cover illegitimate
access to an ATM, a building, or an internet entertainment
service. The lower right part of the figure shows that the
requirements side is structured accordingly.

Basing a reuse repository on the above meta-model,
the following two advantages are achieved:

• Security requirements may be searchable via
threats that they are meant to mitigate, rather than
having to search for requirements “directly”. The
“direct” alternative is less useful here – to know
what to look for the developer must have a pretty
clear picture of the requirement already, which
reduces the gain from reuse.

• Security requirements can be packaged in bundles
that give meaningful protection against
commonly seen threats. In most cases this should

Figure 1: Meta-model for repository



109

be more effective than reusing requirements one
by one and then assembling them in meaningful
bundles on a project-to-project basis.

Having observed these advantages we now turn to
development with reuse.

3. Development with reuse
Figure 2 shoes a UML Activity Diagram that outlines

our suggested approach to development with reuse. The
steps are as follows:

1. Identify critical and/or vulnerable assets: Here
one must identify all the critical and/or vulnerable
assets in the enterprise. A vulnerable asset is
either information or materials that the enterprise
possesses, locations that the enterprise controls or
activites that the enterprise performs.2 The
“and/or” should be noticed specifically. It is
interesting to look at assets that are critical but not
vulnerable because a) further scrutiny may reveal
that they were only believed not to be vulnerable,
and b) their vulnerability might increase in the
future. It is also interesting to look at assets that
are vulnerable but not critical, at least if they are
of the kind that misusers may use as stepping
stones to launch attacks on more critical
resources. For example, a server that holds no
critical information and runs no critical services
might still be used as a zombie in an attack
against other computing resources, perhaps also
in other companies, causing badwill or even
liability to the organization. Starting the security
analysis with a focus on assets ensures that the
final security requirements are anchored in the
protection of materials, information, locations and
activities that are of value to the enterprise.

2. Determine security goals for each asset: For
each critical and/or vulnerable asset identified in
step 1., select the appropriate security goals for
the asset. A security goal is specified in terms of
(1) who are the potential misusers, (2) the type of
security breaches the asset is vulnerable to and (3)
the security level necessary for that type of
breach. For example, the potential misusers may
be Internet script kiddies, business competitors or
disgruntled employees. Examples of security
types are violations of, e.g., secrecy or integrity,
and several of the security threat classifications in
the literature can be used in this step. A possible

2 The most important assets of enterprises, the knowledge and
skills of its workers, is not directly important in an ICT security
context, as they are only vulnerable indirectly, through misuse
of the other, more tangible assets.

taxonomy of security breaches is proposed in
[17]. The security level to be achieved is specified
as a probability that the assets will be kept safe
from the particular type of breach from the
particular type of misuser. Establishing security
goals for all the critical and/or vulnerable assets
ensures that the eventual security requirements
are derived based on thoroughly identified types
of misuers and of security breaches. Also, well-
defined security goals are a prerequisite for
identifying threats. (If you have no goals, there
are no threats either. Even “being killed” is only a
threat if you consider “staying alive” as a goal
and “life” as an asset.)

3. Identify threats to each asset: For each security
goal identified in step 2, find all the threats that
can prevent the goal from being achieved or
maintained. This is where the repository is used
for the first time. First, find misuse cases in the
repository that involve the right types of misusers
as specified by the goal and, then, select those
misuse cases that threaten the right type of
security breach. Finally, assess whether the
misuse case poses a threat that is relevant given
the security level specified by the goal. For
example, misuse cases that involve the breaking
of cryptographic codes may be a relevant threat to
the security and integrity of banks or military
installations with extremely high security levels,
but not to the security and integrity of student
information in a university information system. In
addition to using the repository, it is of course
necessary to look for threats that are not directly
implied by the determined security goals, because
some security goals may indeed have been
forgotten.

4. Analyze risk for each threat: In its most detailed
form, the specification of threats must include the
risk of the various threats, i.e., the estimated
likelihood of occurrence and cost of the damage if
the threat occurs. Whereas the description of
threats is highly reusable, risks must normally be
determined from application to application. For
example, although both an Internet entertainment
service and a missile control system face the

Identify
Assets

Determine
Security
Goals

Specify
Threats

Specify
Req.s

Analyze
Risks

Figure 2: Development for reuse, process



110

threat of spoofing, the associated risks may be
quite different.

5. Determine requirements: For each identified
threat, and taking its risk into account, determine
requirements to mitigate the threat. The repository
is used again here. For each threat retrieved from
the repository, one or more associated bundles of
security requirements may be found. For threats
not retrieved from the repository, appropriate
security requirements must be determined and
specified by other means. Even when threats are
retrieved from the repository, additional bundles
of security requirements that mitigate the threat
may be found by other means. Different levels of
mitigation will be needed for different threats, and
requirements workers must select requirements
bundles that together produce the necessary levels
of mitigation for all threats.

When the process is completed, there should be
satisfactory requirements specified for all threats, and
threats should have been investigated for the security
goals of all assets.

In this paper we do not discuss the first two steps any
further (although one might envision some reuse even in
those steps, for instance by means of asset checklists),
neither do we discuss step 4. It is however necessary to
show these steps to illustrate the context in which the
reuse of step 3 and 5 takes place. The activity diagram of
Figure 3 shows the decomposition of the threat
specification (step 3). Three possible ways are suggested
to identify threats:

• Top down Threat search means that you start
from the identified assets and security goals and
then try to search the repository for threats
relevant to such assets / security goals. This
would be best supported if there were attributes
pointing to relevant types of assets or security
goals in the Threat class, or alternatively there
could be separate classes for asset types and goal
types which the threats were then associated with.

• Bottom-up threat search, i.e., starting by looking
at what you have in repository (without regard for
the determined security goals) and then
considering whether different threats described
there are relevant to your application. This might
seem a less systematic approach than the top-
down alternative, and if the repository is big it
might cause a lot of wasted time looking at
irrelevant threats. However, it might be a valuable
corrective to a strict top-down development in
that it gives an extra check that no threats have
been overlooked. As security goals may have

been overlooked in the previous stage (or assets
before that), a strict top-down approach gives no

guarantee that all threats will be discovered.
• Threat brainstorming. This is the option for

threats which cannot be found in the repository
(whether mandated from determined security
goals or not). But of course, whenever a threat has
been suggested by brainstorming, one should
check to make sure it is indeed not covered by the
repository.

Whatever method a threat has been identified by, one
of two situations may occur:

• The repository contains no description that can be
reused for this threat. In rare cases this could
happen even for threats discovered through the
bottom-up approach, i.e., browsing through the
repository the developers come upon a threat that
is indeed relevant to their application, but the
description in the repository is not reusable
enough.

• The repository contains a description that can be
reused for this threat. In this case there are two
new alternatives: Either there is only a generic
threat description that can be reused, this must
then be adapted to an application specific
instantiation. Or there is already a fitting
application-specific variety in the repository, then

[threat lacking,
Nothing to reuse][reusable

threat found]

Adapt
Generic
Threat Descr.

Describe
Threat

Reuse
Specific
Threat Descr.

[ specific
threat reusable]

[ only generic
threat reusable]

Top-down
Threat Search

Bottom-up
Threat Search

Analyze
Threat
Coverage

Threat
Brainstorming

[coverage OK]

Figure 3: Decomposition of "Specify Threats"



111

this can possibly be reused as-is, saving even
more work for the developers.

As an example, imagine that the repository contained
the threat “Spoof User Access” of Table 1, and that this
was retrieved and found relevant in the project at hand –
to develop a new ATM system. Then, the generic misuse
case could be adapted to the application specific misuse
case shown in Table 3 – the only phrases that would have
to be rewritten would be the underlined ones. However, if
there had also been a previous development project for an
ATM system by means of the repository, it might well be
that there already was such an application-specific misuse
case. Then this could be reused directly.

Table 3: Application-specific misuse case

Misuse Case Name: Spoof Customer at ATM
Summary: The misuser successfully makes the ATM believe
he is a legitimate user. The misuser is thus granted access to
the ATM’s customer services.
Preconditions:
1) The misuser has a legitimate user’s valid means of

identification and authentication OR
2) The misuser has invalid means of identification and

authentication, but so similar to valid means that the ATM
is unable to distinguish OR

3) The ATM system is corrupted, accepting means of
identification and authentication that would normally have
been rejected.

Misuser interactions System interactions
Request access

Request identification and
authentication

Misidentify and
misauthenticate

Grant access

Postconditions:
1) The misuser can use all the customer services available

to the spoofed legitimate user AND
2) In the system’s log (if any), it will appear that the ATM

was accessed by the legitimate user.

Moving on to step 5, the decomposed activity diagram
for this can be found in Figure 4. When it comes to
requirements, the chance for reuse should be considerable
if a threat was reused – then one can follow the
repository’s links to one or more requirement bundles for
that threat. If the threat had to be specified from scratch,
there are no directly corresponding requirements in the
repository, so the chance for reuse is much smaller. Yet, it
could pay off at least to browse briefly for requirements
related to similar threats, if any.

Either way, it may happen that no requirement bundles
are found satisfactory for reuse, or there may be potential
for reuse. Here the situation is quite similar to the reuse of
threats: It might be that reuse is only possible with
adaptation from the generic level, but one might also be
lucky enough to be able to reuse something from the
specific level, as is. If we take ATM systems as a concrete

example, the Access Control path shown in Table 2 can
be utilized almost directly at the specific level, possibly

only with a slight name change to “ATM Access
Control”. As there is no point in showing the same
example twice, we instead show an authorization
example. An instantiation of the generic requirement
“The [user] shall be limited to [maximum action] per
[session / time period / …]” could be “The ATM
customer shall be limited to withdrawing maximum 1000
USD of cash per week” – not preventing spoofing but at
least reducing the damage for the cases when it does
occur. It would also be possible to express this as a path
of a security use case, and although the “shall”
requirement is probably simpler and better to use in this
case, we show it for illustration in Table 4.

Table 4: A specific security use case

Security Use Case: ATM Authorization
Path name: Reject withdrawal beyond weekly limit

Preconditions:
1) Misuser has gained access to ATM customer services, e.g.,
by a successful “Spoof User Access”.
2) The account has a weekly cash withdrawal limit of USD
1000, of which Y < 1000 has currently been withdrawn.
3) Account balance B > 1000 - Y

Misuser Interactions System Interactions

Request to withdraw Z1 >
X - Y

Deny withdrawal as exceeding
weekly limit

Request to withdraw Z2 <=
X - Y

Accept withdrawal, dispense
cash

Postconditions:
1) The misuser will max. have been able to withdraw X.
2) New Account Balance B is old B – Z2

[Nothing
to reuse]

[threat reused]

Adapt
Generic
Bundle(s).

Evaluate
Related
Bundles

Reuse
Specific
Bundle(s)

[ specific
bundle reusable]

[ only generic
threat reusable]

Analyze
Threat
Coverage [coverage OK]

Evaluate
Bundles of
Similar Threats

[threat not reused]

Specify More
Reqs

[not OK]

Figure 4: Decomposition of "Specify Req.s"



112

When threats have been analyzed, determining the
level of security needed towards various threats, follow
the repository links from the threats side to the
requirements side, to look at alternative requirements to
mitigate the relevant threats – and choose those most
appropriate to the needed security levels.

The chosen generic security requirements should then
be adapted to application specific ones. In some cases
hardly any rewriting is needed, in other examples it may
be necessary to change some terms to application specific
ones, and to quantify requirements where the generic ones
only indicate the possibility to quantify, e.g., changing
<time limit> with an actual time limit or X% with a
number.

4. Related Work
Reuse of requirements has been investigated by

researchers for quite a time, e.g., reusing fragments of
domain knowledge through inheritance [28], reuse by
analogy of structure [29], semantic matching [30], or by
clustering of specification diagrams [31]. Our approach
differs from these in its specific focus on security
requirements (contrary to, e.g., functional requirements),
and the investigation of one particular form of
representation as a vehicle for reuse (misuse cases).

Reuse of use cases or scenarios has been investigated
by, e.g., [32, 33], through use case patterns and retrieval
based on some concept of similarity. Our suggested
approach also differs from these in its particular focus on
security requirements. Also, the ideas concerning retrieval
seem to be different. With use cases / scenarios (typically
expressing functional requirements), the idea seems to be
that the developer knows to some extent what he is
looking for (e.g., being able to partially describe a use
case), and then the system will suggest something
similar). Our idea with reuse based on misuse cases,
however, is that the reuser might not know what he is
looking for. Indeed the highest benefits of reuse might be
in cases where the developer, browsing the library,
becomes aware of a threat to the system that he had no
idea of beforehand (and would thus have overlooked).
Hence, one can envision the repository structure being
used more in a checklist manner, looking at all the various
threat categories and considering whether they are
relevant for the application to be developed, rather than
specifying something vaguely and then searching for it.
This means that the reuser’s interaction with the
repository will be more dominated by taxonomy-
supported browsing than by massive automated searches.

A work that deals with reuse of security requirements
– therefore being particularly close in topic to ours – is

the SIREN approach by Toval et al. [34]. This approach
suggests a repository of security requirements initially
populated by using MAGERIT, the Spanish public
administration risk analysis and management method
conforming to ISO15408 (the Common Criteria
Framework [35]). Here, it suggests a process with the
following 4 steps: i) identify assets, ii) identify
vulnerabilities (threats to assets), iii) analyze risks, iv)
choose countermeasures. This is quite similar to our
process for development with reuse of Figure 2: steps (i)
are identical, our step (iii-iv) are similar to their (ii-iii).
There are two differences, though:

• We suggest a step 2 of identifying security goals
for each asset before going on to threats. Our
argument for this is that the definition of security
goals should precede threats.

• Our step 5 is the identification of requirements,
while their parallel step 4 talks about
countermeasures. As argued in [17], the
premature specification of design in terms of
countermeasures is unlucky – one should first try
to express pure requirements (e.g., what level of
protection is needed, rather than how to achieve
that protection in terms of architectural
mechanisms). The examples in [34] do indeed
indicate some design tendencies in the suggested
requirements (e.g., passwords, firewalls).

In addition to the 4 steps from MAGERIT, SIREN also
suggests a larger scale process, based on a Spiral model
(but concentrating on requirements engineering, not the
entire development). Yet this process is much wider than
what is addressed in our paper, the SIREN process deals
with all tasks concerning the requirements specification –
selection from the repository, elicitation, negotiation,
specification, validation. We look more narrowly and in
more detail only at the activities directly related to reuse.

The suggested method addresses many things not
addressed in our work, e.g., organizing assets in 5 levels,
and defining a requirements document hierarchy with 5
different documents (different kinds of requirements
specifications and test plans). These are not contradictory
with our approach, suggesting that they could supplement
each other. When it comes to the SIREN repository
structure, requirements can be structured according to
domains and profiles – the former reflecting functional
application areas, the latter opening for a possible
structuring according to non-functional aspects (e.g., a
profile for information systems security). Requirements
can be parameterized or non-parameterized. The latter can
be reused directly, whereas the former must have, e.g.,
some values filled in. This does not exactly parallel our
difference between generic and application-specific –
rather, both parameterized and non-parameterized
requirements are on the same level in that respect.



113

Moreover, SIREN focuses on requirement lists, while we
focus on (mis)use cases, but this is clearly a surface
difference, as there is clearly nothing in the SIREN
approach that excludes the inclusion of use cases in the
repository (and neither would requirement lists be
excluded from our repository). The requirements in the
SIREN repository can be coupled to (or retrieved via) the
aforementioned document structure and the MAGERIT
asset hierarchy. This is different from our approach,
where a) requirements are navigated from threats, not
assets, and b) the threat specifications are seen as the
principal artifacts of reuse, possibly together with
corresponding requirements.

A distinguishing property of our suggestion is thus that
we suggest to reuse specifications of both requirements
and threats, which are closely linked. Apart from the fact
that goals and threats are opposites, their relationship to
requirements are quite the same (e.g., that there can be
many different choices of requirements to address the
same goal or threat). Hence, our approach is also related
to goal-oriented approaches. For instance, the obstacles
discussed in [36] (in connection with the KAOS method)
could be likened to our threats, and [19] (in connection
with the GBRAM approach) discusses the linking of
security/privacy policies and requirements. Also relevant
is the work on trust in i* [37], by which threats can also
be modeled. Rather than contradicting these, our
particular work again looks more narrowly at reuse issues
with one particular form of representation (misuse cases).

5. Discussion and Conclusions
The paper has proposed a reuse-based approach to

determining security requirements. The main weakness is
that our suggested reuse approach has not been tried out
in practice – for which a tool would have to be developed
the repository populated with threats and requirements to
be reused. Yet we contend that the contribution in this
paper at least is a good starting point for such
demonstrations of practicality, with its suggested models
for the repository and reuse process. Development for
reuse involved identifying security threats and associated
security requirements. This can either be done as domain
analysis or during application development, and should
yield a repository of threats and related requirements.
Threats can for instance be expressed as misuse cases and
requirements as security use cases. Development with
reuse involved identifying security assets, setting security
goals for each asset, identifying threats to each goal,
analyzing risks and determining security requirements,
based on reuse of generic threats and requirements from
the repository. Advantages of the proposed approach
include building and managing security knowledge

through the shared repository, assuring the quality of
security work by reuse, avoiding over-specification and
premature design decisions by reuse at the generic level
and focusing on security early in the requirements stage
of development. The proposed approach may also save
time in the early development phases and produce more
complete requirements, as the repository may prevent
developers from forgetting important threats or
requirements. The generic security requirements show the
developers what level their description should be at
whereas, otherwise, it would be tempting to jump directly
from threats to design mechanisms (or even to
mechanisms directly, without completely understanding
the threats).

The main difference from related work is a specific
focus on the reuse of threats and security requirements,
both described in terms of use cases. On the other hand,
this paper fails to address many issues that are addressed
by related work, hence integration with other approaches
is an interesting topic for further work.

Work on reuse-based determination of security
requirements is still in its early stages, and industrial case
studies are called for. To better support development for
reuse, further work is needed on how to link misuse cases
in the repository to relevant security goals, to better
prepare for development with reuse. The repository
should be implemented in a tool and integrated with
CASE tools. For example, the tool should support
abstraction of application specific threats and security
requirements into generic ones. The tool should also
enforce a common taxonomy and terminology, e.g., for
types of misusers and security breaches, in order to
increase search efficiency.

To better support development with reuse, further work
is needed on method guidance for specifying security
goals, in particular on how to best classify security
threats. Heuristics for setting security levels would also be
helpful. Of course, the tool should support searching for
threats according to misuser and type of security breach,
both exactly and approximately.

Comparing the present proposal to goal- and agent-
oriented approaches to security requirements work is
another path for further work. As emphasized also in
previous publications, misuse case analysis has never
intended to be a full-fledged development approach in its
own right, rather the idea is that it must be integrated with
other approaches.

References
[1] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven
Approach. Boston: Addison-Wesley, 1992.



114

[2] L. L. Constantine and L. A. D. Lockwood, Software for Use:
A Practical Guide to the Models and Methods of Usage-
Centered Design: ACM Press, 1999.
[3] A. Cockburn, Writing Effective Use Cases. Boston:
Addison-Wesley, 2001.
[4] J. Rumbaugh, "Getting Started: Using use cases to capture
requirements," Journal of Object-Oriented Programming, pp. 8-
23, 1994.
[5] D. Kulak and E. Guiney, Use Cases: Requirements in
Context: ACM Press, 2000.
[6] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer,
"Scenario Usage in System Development: A Report on Current
Practice," IEEE Software, vol. 15, pp. 34-45, 1998.
[7] G. Sindre and A. L. Opdahl, "Eliciting Security
Requirements by Misuse Cases," presented at TOOLS Pacific
2000, Sydney, 2000.
[8] G. Sindre and A. L. Opdahl, "Templates for Misuse Cases,"
presented at REFSQ'2001, Interlaken, 2001.
[9] G. Sindre, A. L. Opdahl, and G. F. Breivik,
"Generalization/Specialization as a Structuring Mechanism for
Misuse Cases," presented at 2nd Symposium on Requirements
Engineering for Information Security, Raleigh, NC, 2002.
[10] I. F. Alexander, "Initial Industrial Experience of Misuse
Cases in Trade-Off Analysis," presented at RE'02, Essen, 2002.
[11] I. F. Alexander, "Misuse Cases, Use Cases with Hostile
Intent," IEEE Software, vol. 20, pp. 58-66, 2003.
[12] J. McDermott, "Abuse-Case-Based Assurance
Arguments," presented at 17th Annual Computer Security
Applications Conference (ACSAC'01), 2001.
[13] I. F. Alexander, "Modelling the Interplay of Conflicting
Goals with Use and Misuse Cases," presented at 8th
International Workshop on Requirements Engineering:
Foundation for Software Quality, Essen, Germany, 2002.
[14] J. McDermott and C. Fox, "Using Abuse Case Models
for Security Requirements Analysis," presented at 15th Annual
Computer Security Applications Conference (ACSAC'99), 1999.
[15] D. Firesmith, "Security Use Cases," Journal of Object
Technology, vol. 2, pp. 53-64, 2003.
[16] R. Crook, D. Ince, L. Lin, and B. Nuseibeh, "Security
Requirements Engineering: When Anti-Requirements Hit the
Fan," presented at IEEE International Requirements Engineering
Conference (RE'02), Essen, Germany, 2002.
[17] D. Firesmith, "Engineering Security Requirements,"
Journal of Object Technology, vol. 2, pp. 53-68, 2003.
[18] A. I. Anton, R. A. Carter, A. Dagnino, J. H. Dempster,
and D. F. Siege, "Deriving Goals from a Use Case Based
Requirements Specification," Requirements Engineering
Journal, vol. 6, pp. 63-73, 2001.
[19] A. I. Anton and J. B. Earp, "Strategies for Developing
Policies and Requirements for Secure Electronic Commerce
Systems," presented at 1st ACM Workshop on Security and
Privacy in E-Commerce, 2000.
[20] T. Biggerstaff and C. Richter, "Reusability Framework,
Assessment and Directions," IEEE Software, vol. 4, pp. 41-49,
1987.

[21] A. van Lamsweerde, "Requirements Engineering in the
Year 00: A Research Perspective," presented at ICSE'2000,
Limerick, Ireland, 2000.
[22] M. Mannion, B. Keepence, H. Kaindl, and J. Wheadon,
"Reusing Single System Requirements from Application Family
Requirements," presented at ICSE'99, Los Angeles, CA, 1999.
[23] R. R. Lutz, "Towards Safe Reuse of Product Family
Specifications," presented at SSR'99, Los Angeles, CA, 1999.
[24] M. Daneva, "Measuring Reuse of SAP Requirements: a
Model-based Approach," presented at SSR'99, Los Angeles,
CA, 1999.
[25] E.-A. Karlsson, "Software Reuse: A Holistic Approach,"
in Wiley Series in Software Based Systems: John Wiley & Sons,
1995.
[26] G. Sindre, R. Conradi, and E.-A. Karlsson, "The
REBOOT Approach to Software Reuse," Journal of Systems and
Software, vol. 30, pp. 201-212, 1995.
[27] W. Tracz, "Software Reuse Myths," ACM SIGSOFT
Software Engineering Notes, vol. 13, pp. 17-21, 1988.
[28] H. Reubenstein and R. Waters, "The Requirements
Apprentice: Automated assistance for requirements acquisition,"
IEEE Software, vol. 17, pp. 226-240, 1991.
[29] N. A. M. Maiden and A. G. Sutcliffe, "Exploiting
Reusable Specifications through Analogy," Communications of
the ACM, vol. 35, pp. 55-64, 1992.
[30] P. Massonet and A. van Lamsweerde, "Analogical
Reuse of Requirements Frameworks," presented at 3rd
International Conference on Requirements Engineering,
Washington DC, 1997.
[31] O. Lopez, M. A. Laguna, and F. J. Garcia, "Reuse-based
Analysis and Clustering of Requirements Diagrams," presented
at 8th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ'02), Essen, Germany,
2002.
[32] W. Lam, "Scenario reuse: A technique for
complementing scenario-based requirements engineering
approaches," presented at 4th Asia Pacific Software Engineering
and International Computer Science Conference (APSEC'97 /
ICSC'97), Hong Kong, 1997.
[33] H. G. Woo and W. N. Robinson, "Reuse of Scenario
Specifications Using an Automated Relational Learner: A
Lightweight Approach," presented at IEEE Joint Conference on
Requirements Engineering (RE'02), Essen, Germany, 2002.
[34] A. Toval, J. Nicolas, B. Moros, and F. Garcia,
"Requirements Reuse for Improving Information Systems
Security: A Practitioner's Approach," Requirements Engineering
Journal, vol. 6, pp. 205-219, 2002.
[35] CCIMB, "Common Criteria for Information Technology
Security Evaluation," Common Criteria Implementation Board,
Technical Report CCIMB-99-031, August 1999.
[36] A. van Lamsweerde and E. Letier, "Handling Obstacles
in Goal-Oriented Requirements Engineering," IEEE
Transactions on Software Engineering, vol. 26, pp. 978-1005,
2000.
[37] E. Yu and L. Liu, "Modelling Trust in the i* Strategic
Actors Framework," presented at 3rd Workshop on Deception,
Fraud and Trust in Agent Societies, Barcelona, 2000.



115

A Framework for Modeling Privacy Requirements in Role Engineering 

Qingfeng He and Annie I. Ant n
Department of Computer Science 
North Carolina State University 
Raleigh, NC 27695-8207, USA 
{qhe2, aianton}@eos.ncsu.edu

Abstract

Privacy protection is important in many industries, 
such as healthcare and finance. Capturing and modeling 
privacy requirements in the early stages of system 
development is essential to provide high assurance of 
privacy protection to both stakeholders and consumers. 
This paper presents a framework for modeling privacy 
requirements in the role engineering process. Role 
engineering entails defining roles and permissions as well 
as assigning the permissions to the roles. Role 
engineering is the first step to implement a Role-Based 
Access Control (RBAC) system and essentially a 
Requirements Engineering (RE) process. The framework 
includes a data model and a goal-driven role engineering 
process. It seeks to bridge the gap between high-level 
privacy requirements and low-level access control 
policies by modeling privacy requirements as the contexts 
and obligations of RBAC entities and relationships. A 
healthcare example is illustrated with the framework.   

1. Introduction 

As the Internet and e-commerce have prospered, 
privacy has become of increasing concern to consumers, 
developers, and legislators. Legislative acts, e.g. Health 
Insurance Portability and Accountability Act (HIPAA) 
for healthcare [HIP96] and Gramm Leach Bliley Act 
(GLBA) for financial institutions [GLB01], require these 
industries to ensure consumer data’s security and privacy. 
Companies and organizations protect consumer privacy in 
various ways, including publishing a privacy policy on 
their websites, enabling a P3P [P3P02] compliant privacy 
policy, incorporating a privacy seal program (e.g. Truste, 
BBBOnline), etc. However, these approaches cannot truly 
safeguard consumers because they do not address how 
personal data is actually handled after it is collected 
[AER02, AEP01, GHS00]. Companies’ and 
organizations’ actual practices might intentionally or 
unintentionally violate the privacy policies they published 
on their websites. Privacy violations are increasingly 
disclosed over the Internet, TV, newspaper and other 

medias, such as the famous Toysmart [Toy00] and Eli 
Lilly [Eli02] cases.  

Privacy protection can only be achieved by enforcing 
privacy policies within an organization’s online and 
offline data processing systems. Most organizations have 
one or more privacy policies posted on their websites. 
Due to separation of duties in an organization, privacy 
policies are usually defined as high-level natural language 
descriptions by an organization’s privacy group, chaired 
by the Chief Privacy Officer (CPO). High-level natural 
language privacy policy descriptions are difficult to 
enforce directly via access control. Similarly, security 
polices are usually defined by another group of people in 
the organization, chaired by the System Security Officer 
(SSO). However, privacy requirements are often not 
reflected in the design and implementation of security 
policies. Thus, there exists a gap between security and 
privacy protection that is exacerbated by conflict of 
interests between stakeholders, system developers, and 
consumers. Researchers contend security and privacy 
requirements should be considered during initial system 
design [AE01, AEP01, AEC02]. Thus, modeling security 
and privacy requirements in the early stages of system 
development is essential for security and privacy 
enforcement.  

Role-Based Access Control (RBAC) [SCF96, FSG01] 
has received increasing attention because it offers many 
additional benefits compared with traditional 
Discretionary and Mandatory Access Controls (DAC and 
MAC) [AS00]. RBAC is considered as a promising 
alternative to traditional MAC and DAC models 
[OSM00], especially in the healthcare domain. “It is 
generally accepted that RBAC is more suited to 
healthcare than other access control mechanisms to meet 
the requirements for the security of healthcare 
information” [ZAC02]. The Privacy-Aware RBAC 
(PARBAC) model enforces privacy policies in an 
organization [He03a], but it lacks a mechanism for 
mapping privacy requirements into the PARBAC model.  

Role engineering for RBAC is the process of defining 
roles, permissions, role hierarchies, constraints and 
assigning the permissions to the roles [Coy96]. It is the 
first step to implement an RBAC system and essentially 



116

an RE process. Before a system can realize all the 
benefits of RBAC, the role engineering activities must 
occur, yielding a complete specification.  

Security requirements are modeled in the role 
engineering process. For example, the well-known 
separation of duties security requirement is modeled by 
defining exclusive roles; least privilege security 
requirement is modeled by assigning each role a 
minimum set of permissions to perform each task. 
However, privacy requirements are not addressed in role 
engineering. For example, purpose binding, i.e. data 
collected for one purpose should not be used for another 
purpose without user consent, is an important privacy 
requirement. To date the security and RE literature does 
not address purpose elicitation and modeling in role 
engineering. Another issue regarding to privacy 
protection is user privacy preferences modeling and the 
integration of these preferences with access control 
authorizations. A mechanism is needed to model privacy 
requirements and user privacy preferences in a systematic 
way so that privacy policies can be enforced in the 
software system. 

This paper presents a goal-driven framework for 
modeling privacy requirements in the role engineering 
process. We model privacy requirements as contexts and 
constraints of permissions and roles using goal-based RE 
techniques. These contexts and constraints serve as a 
basis for defining access control policies. The proposed 
framework seeks to bridge the gap between high-level 
privacy requirements and low-level access control 
policies in the early stages of system development and 
provide a basis for enforcing privacy requirements with 
RBAC.

The rest of this paper is organized as follows. Section 
2 provides a summary of related work. Section 3 
describes privacy protection elements modeling. In 
Section 4, the framework for modeling privacy 
requirements is described. Then in Section 5, a healthcare 
example is illustrated with the framework. Finally, a 
summary of the paper is given in Section 6. The 
limitations of the framework and future work are also 
discussed in this section. 

2. Related work 

This section provides an overview of relevant work in 
role engineering, goal-driven requirements engineering, 
and privacy policies and requirements.  

2.1. Role engineering for RBAC

There exist several role engineering approaches, the 
first of which applies scenarios. Neumann and Strembeck 
proposed a scenario-driven approach for engineering 
functional roles in RBAC [NS02]. In this approach, each 

task is depicted using a collection of scenarios and each 
scenario is decomposed into a set of steps. Because each 
step is associated with a particular access operation, each 
scenario is linked to a set of permissions. The work is 
limited in that it is only effective to derive functional 
roles. Fernandez and Hawkins suggested determining the 
needed rights for roles from use cases [FH97]. 

Crook et al. proposed an analytical role modeling 
framework to derive roles from organizational structures 
[CIN02]. Although this provides a way to derive roles, 
not all roles can be derived from organizational 
structures. The method is not general and does not 
address role constraints. Epstein proposed a layered 
model for engineering role-permission assignment by 
introducing three intermediaries between roles and 
permissions: jobs, workpatterns, and tasks [Eps02, ES01]. 
Epstein’s approach provides an effective way to assign 
permissions to roles and aggregate permissions into roles. 
Roeckle et al. proposed a process-oriented approach for 
role finding to implement role-base security 
administration [RSW00]. Their approach provides a 
method to find roles but does not address how to find 
permissions and how to assign permissions to roles.  

Unfortunately, neither of these approaches [Eps02, 
ES01, FH97, RSW00] considers constraints and role 
hierarchies. Epstein and Sandhu’s UML based approach 
documents components of an RBAC model in UML 
syntax [ES99]. This approach can assist the role 
engineering process but it does not provide a method for 
deriving roles. Kern et al. proposed an iterative-
incremental life-cycle model of a role in the context of 
enterprise security management [KKS02]. The role life-
cycle concept is very important for security 
administration; however, this approach fails to support 
the derivation of roles and permissions. Schimpf argued 
role engineering is a critical success factor for enterprise 
security administration [Sch00]. He proposed to organize 
a role engineering project and follow a clearly defined 
life-cycle model for roles.  

In conclusion, the above-discussed approaches focus 
on different aspects of role engineering. Each work has its 
own strengths and weaknesses. None of these approaches 
addresses privacy requirements. 

2.2. Goal-driven requirements engineering

Goal-driven RE employs goals to elicit, specify, 
analyze, and validate requirements. Kavakli identified 
seven major goal-oriented methods in RE [Kav02]. A 
complete overview of goal-driven RE techniques is 
beyond the scope of this paper. Herein we only discuss 
goal-scenario combination approaches. A more complete 
overview of goal-driven RE approaches can be found in 
[Lam01, Kav02]. 



117

Goals and scenarios have complementary 
characteristics [Lam01]. Goals are usually abstract and 
declarative. They are high-level objectives of the 
business, organization or system. Scenarios are concrete, 
narrative, and procedural. They describe real situations 
using examples and illustrations. Hence combining goals 
and scenarios is an effective way to elicit and validate 
requirements. Goals are operationalized through scenarios 
and refined into requirements [AMP94]. Similarly, 
scenarios can be used to help discover goals [AP98].  

The GBRAM uses goal hierarchies to organize 
requirements as scenarios, goal obstacles, and constraints 
[Ant96]. Others also organize scenarios hierarchically 
according to goals and goal obstacles [Coc97]. Rolland et 
al. proposed a bidirectional goal-scenario coupling 
approach between goal discovery and scenario authoring 
[RSA98]. Kaindl proposed a systematic design process 
based on a model combining scenarios with goals and 
functions [Kai00]. In the combined model, “purpose” 
serves as a link between functions and goals: a system’s 
aggregated functions have some purposes and these 
purposes match the (sub)goals of the users. Purpose has 
also been integrated with scenarios to model tasks in one 
of Kaindl’s early works [Kai95]. This paper herein builds 
upon this notion of purpose.  

2.3. Privacy policies and requirements 

Two major privacy protection principles are the OECD 
guidelines for data protection [OEC80] and the FTC Fair 
Information Practice (FIP) Principles [FIP98]. The OECD 
guidelines define eight privacy principles: collection 
limitation, data quality, purpose specification, use 
limitation, security safeguards, openness, individual 
participation, and accountability. The OECD principles 
intend to protect personal data privacy while pursuing 
free information flow between different organizations and 
different countries. The five FIP principles 
(notice/awareness, choice/consent, security/integrity, 
access/participation, and enforcement/redress) are less 
complete than the OECD guidelines. Both the OECD and 
FIP principles provide the general privacy requirements 
with which organizations should comply. Several 
industries have additional legislative acts (e.g. HIPAA 
and GLBA) regulating their data practices. 

Based on these general privacy principles and acts, 
each organization defines its own privacy policies. These 
policies are the major privacy requirements that an 
organization should enforce in their data processing 
systems. For example, when websites collect information 
from customers, they need to inform customers for what 
purpose the data is being collected, who the data recipient 
is, how long the data will be kept, and how the data will 
be used, etc. (notice/awareness principle in FIP). They 
should also provide opt-in/opt-out choices for customers 

or obtain customer consent on how to use the collected 
data (choice/consent principle). The actual data 
operations of companies and organizations should be 
consistent with user consented privacy policies 
(enforcement/redress principle).  

Fischer-Hubner summarized four privacy aspects that 
a system should protect: confidentiality of personal data, 
integrity of personal data, purpose binding of accesses to 
personal data, and necessity of personal data processing 
(i.e. the collection and processing of data shall only be 
allowed if it is necessary for completing appropriate 
tasks) [Fis01]. Confidentiality and integrity have been the 
focus of the security community for a long time. The 
principle of necessity can be enforced with task-based 
authorization models, such as the Workflow 
Authorization Model (WAM) [Fis01]. However, purpose 
binding is not addressed in traditional security models.  

Similarities and differences between policies and 
requirements are identified in [AEP01]. Ant n and Earp 
have proposed strategies to employ scenario management 
and goal-driven requirements analysis methods for 
specifying security and privacy policy for secure 
electronic commerce systems [AE01]. Ant n et al. have 
also applied goal-based requirements analysis to align 
software requirements with security and privacy policies 
[AEC02]. A privacy requirements taxonomy for websites 
has been presented in [AE03] by using goal-mining 
techniques on privacy policies. In this taxonomy, privacy 
requirements are classified as either privacy protection 
goals or privacy vulnerabilities. This paper builds upon 
these specification techniques to better support modeling 
of privacy requirements in role engineering. All sample 
privacy policies given in this paper are privacy goals 
identified from 23 websites’ privacy policies in Ant n et 
al.’s goal-mining exercises [AE03].  

3. Privacy elements modeling 

High-level privacy policies and requirements that are 
specified with natural language must be formalized into 
authorization rules before they can be technically 
enforced. Therefore, it is necessary to identify privacy 
protection elements in the role engineering process.  

A typical access control rule is expressed as a tuple <s,
o, op>, such that a subject s can access an object o on 
operation op [DD82]. A subject could be a user or a 
program agent. In an RBAC policy, this rule is expressed 
in another way: <u, r, p> [SCF96]. A user u can only 
access an object, if he/she is assigned a role r, and if the 
role is assigned certain permission p, which is allowed to 
access the object. A permission is usually represented as 
the combination of some operations on an object. 
Although the form is different, the basic elements of an 
RBAC rule are still subjects, objects, and operations. 



118

These three elements, however, are insufficient to 
represent a privacy authorization rule. For instance, 
purpose binding is an important privacy requirement as 
we discussed in Section 2.3, but purpose is not reflected 
in the <s, o, op> tuple. In addition to the above three 
basic authorization elements (subjects, objects, and 
operations), three other privacy elements (purposes, 
conditions, and obligations) are identified in a privacy 
authorization rule [KS02]. Our framework builds upon 
these privacy protection elements as we now discuss.  

3.1. Purposes 

Purpose is a standard entity in most privacy policies as 
recognized in P3P [P3P02]. To enforce purpose binding 
privacy requirements, two kinds of purpose are identified: 
consumer data purpose and business purpose. Consumer 
data purpose is consented by a consumer and recorded by 
a data collector and expresses how the corresponding 
collected data can be used. Business purpose is the actual 
purpose for a business task that involves certain consumer 
data accesses or operations. 

3.1.1. Data purposes. Customer consented data purposes 
are usually high-level and the number of such purposes is 
limited. According to the official P3P1.0 Specification 
[P3P02] released by the World Wide Web Consortium 
(W3C) on 16 April 2002, there are only 12 purposes1

defined in P3P1.0. Table 1 shows these 12 purposes.  

Table 1. Purposes defined in P3P1.0 

Purpose Name Description 
current Completion and Support of Activity For 

Which Data Was Provided 
admin Web Site and System Administration 
develop Research and Development 
tailoring One-time Tailoring 
pseudo-analysis Pseudonymous Analysis 
pseudo-decision Pseudonymous Decision 
individual-analysis Individual Analysis 
individual-decision Individual Decision 
contact Contacting Visitors for Marketing of 

Services or Products 
historical Historical Preservation 
telemarketing Telephone Marketing 
other-purpose Other Uses 

3.1.2. Business purposes. Business purposes are defined 
in each organization according to its business process. 
They may be defined more specifically than data 
purposes. For example, the contact purpose may be 
divided into three categories: phone/fax contact, postal 
contact, and email contact. However, no matter how 

1 There is some inconsistency in P3P1.0 specification. In the P3P1.0 
XML DTD Definition (Non-Normative), two other purposes are defined: 
customization and profiling, which are not defined in XML Schema 
Definition (Normative).

business purposes are defined, they must be connected 
with data purposes. We now introduce a purpose 
hierarchy to support this. 

3.1.3. Purpose hierarchy. The relation between purposes 
can be modeled with a purpose hierarchy. The purpose 
relation is a partial ordered relation. A partial order is a 
reflexive, transitive, and antisymmetric relation. Partial 
ordered relations support complex purpose hierarchies, 
such as tree, inverted tree, and lattice structures. We 
employ the use of a purpose hierarchy to map high-level 
data purposes to low-level business purposes. If an 
operation is allowed for a given purpose, it is also 
allowed for all sub-purposes. Figure 1 illustrates a sample 
hierarchy for the marketing purpose. In this example, 
email marketing, postal marketing, and phone/fax 
marketing are sub-purposes of both direct marketing and 
third-party marketing. 

Purpose hierarchy allows unambiguous purpose 
lookup from business purposes to data purposes. The 
following is an example of an ambiguous purpose lookup. 
If a customer consents to have his personal information 
used only for email marketing purpose, the access 
decision of an operation (i.e. whether the data access 
request is granted or denied) with the purpose of direct 
marketing cannot be determined. This is because email 
marketing belongs to both the direct marketing and third-
party marketing purposes. The system cannot determine 
its exact parent purpose. 

The above problem can be solved by placing 
restrictions on the purpose hierarchy. We only allow 
business purposes to be mapped to the lowest level of the 
purpose hierarchy. The purpose for an operation must be 
defined as specifically as possible. In this way, data 
purposes are either in the same level as business purposes 
or in a higher level. This ensures there are no ambiguous 
purpose lookups from business purposes to data purposes.  

3.2. Conditions 

A privacy policy may express additional conditions 
that must be satisfied before a data access request can be 
granted. For example, one FIP principle is 
choice/consent, which means the data collector should 
provide opt-in/opt-out choices for consumers to allow 

Figure 1.  Purpose hierarchy for marketing 

Direct
Marketing

Email
Marketing

Postal
Marketing

Phone/Fax
Marketing

Third-Party 
Marketing

Marketing



119

them to decide how their personal information can be 
used. In the following sample privacy goal extracted from 
our goal library [AE03], G18: OPT-OUT from receiving 
emails from our company, the access to customer data 
(e.g. email addresses) must be qualified by the condition 
Customer.EmailService.Optout = FALSE. In another 
example, G6: PREVENT disclosing PII (Personally 
Identifiable Information) without consent, “obtaining 
consent” is a condition that must be satisfied if an 
organization wants to disclose PII. 

Conditions are not solely for privacy protection. In 
security enforcement, conditions are usually modeled as 
authorization constraints [RZF01].  

3.3. Obligations 

Obligations are actions that must be carried out if a 
request to access data is granted. For example, in goal, 
G49: REQUIRE affiliates to destroy customer data after 
service are completed, “destroy customer data” is an 
obligation for affiliates. 

In current website privacy policies, obligations are 
seldom stated. We have reexamined the 171 privacy 
requirements taxonomy goals identified from 23 
websites’ privacy policies during the goal-mining 
exercises [AE03]. The above example is the only one we 
identified that involves obligations out of 171 privacy 
goals.  

Obligation-based security policies can be enforced if 
they can be completely resolved within an atomic 
execution [RZF01]. However, with respect to the 
obligations in privacy policies, they are usually not an 
immediate action as the previous sample policy has 
shown. In most cases, it is a task or an action that should 
be executed in the future. Therefore, monitoring and 
auditing the execution of privacy obligations might be 
sufficient for obligation enforcement [BJW02].  

4. The framework for modeling privacy 
requirements in role engineering 

This section presents the goal-driven framework for 
modeling privacy requirements in role engineering. The 
framework includes a context-based data model and a 
goal-driven role engineering process. The data model 
expresses how the privacy elements can be modeled in 
RBAC. The goal-driven role engineering process 
addresses how privacy elements modeling can be 
achieved in the role engineering process.  

4.1. A context-based data model

The data model models three privacy elements 
(purposes, conditions, and obligations) as attributes of 

roles, permissions, and objects, which we name contexts. 
Figure 2 depicts the data model architecture. We now 
discuss how these three elements are modeled in our 
framework. 

 Business purposes are identified in the role 
finding/definition process of role engineering. They are 
mapped as an attribute of roles, which we name 
Role.context.purpose. When a role is derived from a 
business process or an organization structure, some 
purposes are implicitly embodied. It is the job of role 
engineering to elicit and explicitly define these purposes 
associated with a role. For example, system administrator
role implies that the purpose of this role is administration.
From a more accurate and more specific aspect, business 
purposes not only depend on the role, but also depend on 
the operation the role intends to perform and the context 
under which the operation is performed. However, 
provided that business purposes are usually high-level 
and the number is limited, as described in Section 3.1, it 
is acceptable to associate business purposes with roles. In 
an RBAC model with role hierarchies, the super-role 
automatically inherits all the purposes associated with its 
sub-roles. This is different from the purpose relationship 
in the object model, in which a subtype object inherits all 
the purposes associated with its supertype object. This is 
not inconsistent because the purposes associated with 
roles are business purposes while the purposes associated 
with objects are data purposes. 

Data purposes and other privacy preferences, such as 
the recipient of data, the retention period of data, etc., are 
modeled as object attributes in our data model. This work 
is more appropriate for data management than for role 

Figure 2. A context-based data model 

Role

Objects

Permissions

Role.context.purpose

Role.name

Role.ID Permission.ID 

Permission.operation

Permission.object

Permission.context.*

Permission.constraints

Permission.obligations

Object.ID

Object.type 

Object.context.recipient

Object.context.service.opt-in

Object.context.retention

Object.context.purpose

Object.context.service.opt-out



120

engineering. In this paper, we assume that data are 
organized into the specified structure. In our framework, 
object attributes are operands of permission constraints, 
as we will discuss now.  

The conditions of an operation specified in a privacy 
policy are modeled as permission constraints. Permission 
constraints are Boolean expressions. The operands of 
these expressions are attributes of roles, permissions, and 
objects. The operators of these expressions include 
standard comparison (i.e. <, >, =, <=, >=, and !=) and 
logical operators (i.e. Boolean AND, OR, and NOT). To 
extend the constraint for purpose comparison, we 
informally define another type of operator for purpose 
comparison: <<. 

Definition: Given two purposes p1 and p2, we claim 
purpose p2 contains p1 (or purpose p1 belongs to p2) if 
and only if p2 is on the path from the root of the purpose 
hierarchy down to p1 or p2 is the same as p1, which is 
represented as p1 << p2.

Based on the above definition, the permission 
constraint to enforce purpose binding is  

Role.context.purpose << Object.context.purpose 

The obligations of an operation are modeled as 
permission obligations that should be executed 
afterwards. As we discussed in Section 3.3, obligations in 
privacy policies are usually not immediate actions, and 
they are not enforced by the reference monitor. In our 
framework, we record such obligations so that the 
reference monitor can send these obligations to another 
module (e.g. an obligation execution module) for future 
execution and monitoring. 

The proposed context-based data model is inspired 
from [KKC02], in which Kumar et al. extends RBAC by 
introducing the notions of role context and context filters. 
Kumar et al. employs user context and object context to 
construct a context filter for a role, which is named role 
context. However, this approach is not suitable for 
modeling purposes because business purposes are not 

associated with users or objects. This approach does not 
consider the context of roles and permissions. Our data 
model assimilates the basic idea from [KKC02] but goes 
beyond that in scope. We also take role context and 
permission context into account. For example, in addition 
to purpose, a role may have other attributes, e.g. 
Role.context.lifetime defines the life period of a role. This 
enables our framework to provide fined-gained, context-
based access control. Context-based access control not 
only takes into account the person attempting to access 
the data and the type of data being accessed, but also the 
context of the transaction in which the access attempt is 
made. This is an additional advantage of our data model. 
The topic related to context-based access control is 
beyond the scope of this paper. 

4.2. A goal-driven role engineering process

We propose a goal-driven role engineering process to 
demonstrate how the privacy contexts in the above data 
model can be elicited and modeled. We now discuss the 
main steps of this process as shown in Figure 3.  

The process is comprised of two phases: Role-
Permission Analysis (RPA) and Role-Permission 
Refinement (RPR). These two phases are represented 
using dotted lines in Figure 3. During the RPA phase, we 
apply goal- and scenario-oriented requirements analysis 
techniques to analyzing business process and business 
tasks. The output of this phase is a collection of role 
candidates and permission candidates, as well as the 
corresponding role and permission contexts.  

There are several possible input sources: (1) business 
process description, (2) policy statement (including 
legislative acts), and (3) requirements specification. The 
RPA phase starts by identifying tasks. Usually a task is 
performed to achieve some goals. For example, “schedule 
meeting” is a task in a meeting scheduler system. The 
goal to perform this task is to schedule a meeting.  

After identifying the task domain, one or more 
scenarios are authored to model the task details. Every 
scenario contains a sequence of events, each of which 

Figure 3. A goal-driven role engineering process for RBAC 

Role-Permission Analysis (RPA) 

Role-Permission Refinement (RPR)

Input
Derive task 

(goal)
Author

scenarios

Derive permission 
candidates and 

contexts from scenarios Identify permission 
constraints 

Discover new goals and refine scenarios 

Derive
roles 

candidates

Assign permissions to 
each role 

Identify 
purposes

Identify 
allowable 

purpose set 
of roles 

Identify
Domain

Identify purpose 
hierarchies

Derive role 
hierarchies

Identify role 
constraints 

Refine permissions 
and roles 

Define RBAC 
model



121

may be modeled as an RBAC permission. Permission 
candidates are then identified. The object and operation 
are the most important elements of a permission. The next 
step is to identify permission contexts, the attributes of 
the permission, and permission constraints, the conditions 
that must be qualified to execute the permission. 

After the permission identification step, role 
candidates can be identified from the actors of events. A 
set of permission candidates is associated with each role 
candidate. When a role is identified, the purpose is also 
identified and associated with this role.  

The RPA phase continues until all module tasks have 
been identified. At this stage, we have a collection of role 
candidates and permission candidates, as well as the 
corresponding role contexts and permission contexts. 
These outputs are needed for the RPR phase. 

It is very possible that the RPA phase does not 
generate a perfect role and permission set. The roles and 
permissions identified at this time are probably 
ambiguous and redundant. They must be refined in the 
RPR phase according to other factors, such as 
organization structure, policy statement, etc. As a result 
of role refinement, role hierarchy is defined and 
appropriate permissions are assigned to the roles. Finally, 
after all the purposes are identified, purpose hierarchies 
are defined and a role’s allowable purpose set is 
identified. The RBAC model is defined thereof.  

Although requirements analysis and role engineering 
analysis are interleaved in the above description, actual 
practices may not have to follow the exact sequence in 
Figure 3.  Some requirements engineers may find it 
comfortable to complete requirements analysis first and 
then conduct role engineering analysis. Our example 
analysis in Section 5 adopts this scheme.  

This process is convenient for modeling privacy 
requirements because it is easy to model the context of 
goals and permissions with goal- and scenario-based 
requirements analysis. A scenario’s preconditions express 
possible permission constraints. The postconditions are 
possible obligations. The goal identified in this process is 
the possible purpose of the task and the possible purpose 
associated with a role. However, the RPR phase does not 
depend on the goal- and scenario-based requirements 
analysis. Other heuristics must be provided to facilitate 
role/permission refinement and the definition of role 
hierarchies.

The process shown in Figure 3 is simplified from a 
more complete life-cycle goal-driven role engineering 
process, which we are currently developing [He03b].  

5. A healthcare example 

This section presents an example analysis of a HIPAA 
scenario using our Scenario Management and 
Requirements Tool (SMaRT) [SMaRT03]. SMaRT is a 

web-based tool that supports scenario- and goal-based 
requirements analysis. It has been successfully applied in 
several case studies [AA03]. Because SMaRT does not 
currently support role engineering analysis, the derivation 
of RBAC elements was documented using a spreadsheet. 
We plan to extend SMaRT to support the proposed goal-
driven role engineering process. 

Consider the healthcare scenario below that is readily 
available in [HIP03]: 

A patient, Mr. Stalwart, is brought to a hospital’s 
Emergency Department (ED). He is unresponsive with a 
gunshot wound (GW) to the abdomen. Upon his arrival, 
Dr. Goodcare examines the patient, and begins 
resuscitative efforts.

First, the ward secretary (WS) registers Mr. Stalwart 
into the ED system. According to HIPAA security 
regulations, four security and privacy requirements apply 
to this task: 

The secretary needs to have been trained in privacy 
and security.  
The hospital must document this training. 
The ward secretary needs to have been authenticated 
by the system, and his/her authority to perform the 
registration task confirmed (RBAC). 
The system should maintain an audit trail of 
information viewed and modified. 

The result of our scenario analysis is shown in Figure 
4. The elements that appear above the line in Figure 4 
correspond to the RE activities whereas the elements that 
appear below the line correspond to the role engineering 
activities. We now walk through the goal-driven role 
engineering process with the scenario.

We first conduct the goal-based requirements analysis 
process. From the task description, we identify the task 
domain is ED Patient Info Management, and the goal of 
this task is to register patient into the ED system. Then 
we author a scenario to model the task. To model a 
complex task, more than one scenario may be needed. A 
sequence of events is elicited to illustrate the scenario. An 
event includes an actor and an action. A collection of 
actors and actions are then identified. The preconditions 
are identified by asking what conditions must be satisfied 
to perform this task. The postconditions are identified by 
asking what are the results of the task, and what are the 
obligations if the task is performed. The information 
about the registration process may be obtained via 
interview with stakeholders or from existing job 
description manuals.  

Based on the requirements analysis, we can then 
conduct the role engineering analysis. First, we map the 
actions to permission candidates and identify permission 
constraints from preconditions. We also identify 
permission obligations from postconditions, if there are 
any. After that, we identify role candidates and the 



122

purposes of the task. We associate this purpose with the 
role and model it as a role context. The roles are then 
associated with appropriate permissions. These are the 
major steps in the RPA phase. 

Figure 4. A healthcare example 

Because we are only analyzing a single task, this 
example does not have a collection of roles/permissions 
nor does it include a role hierarchy, role constraints or 
purpose hierarchy. Hence, the RPR phase is outside the 
scope of this example. However, we have specified 
patient registration as one of the allowable purposes for 
role WS. Although we have only elaborated one scenario, 
other plausible scenarios would typically be identified 
and elaborated as well.  For example, Dr. Goodcare 
requests patient record and Ward Secretary updates 
patient status.

Because the system is an agent that performs some 
tasks, we also model System as a role in the example. 

Generally speaking, we only model the permissions and 
roles from a user’s perspective. The system’s permissions 
are built into the implementation program. Note that the 
derived permissions may depend on the implementation. 
If the system is designed so that whoever can invoke the 
patient registration procedure has full control of 
everything in the procedure, then the three permissions 
assigned to role WS can be merged into one: can invoke 
patient registration procedure.

The above example analysis is only a proof-of-concept 
evaluation of the framework. We are validating the 
approach in the specification of Transnational Digital 
Government (TDG) project for Belize and Dominican 
Republic [Cav03]. This study will allow us to evaluate the 
effectiveness, scalability as well as suitability of our 
framework for integration with other RE methodologies. 

6. Conclusions and future work 

Privacy enforcement is important for many 
commercial software systems. Modeling privacy 
requirements in the early stages of system development is 
essential for privacy enforcement and ensuring quality in 
software systems used in environments that pose risks of 
loss as a consequence. This paper presents a framework 
for modeling privacy requirements in role engineering. 
Basic privacy requirements such as purpose binding can 
be modeled as permission constraints. Privacy 
preferences, such as opt-in/opt-out choices, data recipient, 
etc., can also be modeled using the context-based data 
model. The framework provides a basis for enforcing 
privacy requirements with RBAC.  

Our framework demonstrates that RE can bridge the 
gap between high-level privacy requirements and low-
level access control policies. Requirements engineers can 
elicit and model privacy requirements as RBAC entity 
contexts and constraints by analyzing business processes 
and privacy policies using the goal-driven role 
engineering process. Privacy officers can then define 
privacy authorization rules based upon the context-based 
data model. These rules are similar to the access control 
rules derived from security policies and they are enforced 
via RBAC.  

Our framework also demonstrates that RE can bridge 
the gap between competing stakeholders’ security and 
privacy requirements, i.e., companies’ privacy practices 
may be in conflict with user preferences. The approach 
presented in this paper allows both perspectives to be 
modeled (e.g. business purposes and data purposes) and 
tradeoffs to be analyzed. 

Our role-engineering process is a top-down approach; 
we derive roles and permissions based on business 
process analysis. Industry experiences report role analysis 
should ideally be a mixed bottom-up and top-down 

[Goal] Register patient into the ED system 
[Domain] ED Patient Info Management 
[Scenario] Ward secretary registers patient into the ED system
[Actors] Ward secretary 
 System 
[Actions] Invoke patient registration procedure 
 Request PHI (Protected Health Information) 
 Enter PHI 
 Submit PHI 
 Save PHI 
 Confirm PHI saved 
 Generate audit trail 
[Events] Ward secretary invokes patient registration procedure 
 System requests PHI 
 Ward secretary enters PHI 
 Ward secretary submits PHI 
 System saves PHI 
 System confirms PHI saved 
 System generates audit trail 
[Preconditions] Ward secretary authenticated 

Ward secretary trained in privacy and security 
Hospital security and privacy training process  

documented
[Postconditions] Registration audit trail generated 

  Patient registered in the ED system 

[Permissions] P1: can invoke patient registration procedure 
         P2: can enter PHI 
         P3: can submit PHI 
         P4: can request PHI 
         P5: can save PHI 
         P6: can confirm PHI saved 
         P7: can generate audit trail 
[Permission Context] No permission context identified 
[Permission Constraints] user.training = T AND

           user.training.documenting = T 
[Permission obligations] No permission obligations identified 
[Roles] Ward Secretary (WS) 

System (S) 
[Role Context] WS.purpose = patient registration 
[Role Permission Assignment] WS (P1, P2, P3) 
        S (P4, P5, P6, P7) 
[Allowable Purpose Set] APS (WS) = {patient registration} 



123

approach [Sch00, KKS02]. Our framework can be used 
with other bottom-up approaches to achieve best result. 

Although our work is preliminary, early validation in 
the TDG project [Cav03] suggests that we will be able to 
address some of the following limitations in the future.  

One limitation of the goal-driven role engineering 
process is that it is only effective in deriving functional 
roles/permissions in RBAC. Unfortunately, goals and 
scenarios are difficult to derive permissions that result 
from the chosen technology instead of functionality, for 
example, internal web server functions for a web-based 
application [NS02].  

Our framework can model purpose binding but cannot 
directly model another privacy requirement, the principle 
of necessity. The principle of necessity can be enforced 
by RBAC if each task is granted a minimum set of 
permissions and users are allowed to perform one current 
task at the same time [Fis01]. Therefore, it is possible to 
support this requirement with our context-based data 
model by expressing tasks as permission context. We plan 
to support this in the future.  

Recall in our example four HIPAA security and 
privacy requirements were identified from a policy 
statement. However, our framework does not address how 
to extract corresponding security and privacy 
requirements from existing legislative acts and 
organizational policies. We plan to develop techniques to 
elicit such requirements and associate them with the tasks 
we are modeling. Modal-Action Logic (MAL) [GF91] is 
one promising technique that we are exploring. 

The goal-driven role engineering process described in 
Section 5 is high-level. Only the RPA phase is elaborated 
in this paper. We are developing detailed heuristics to 
elicit and refine roles, permissions, and role hierarchies. 
We also plan to integrate the proposed role engineering 
process into SMaRT to provide tool support. 

Acknowledgements 

This work is partially funded by NSF ITR Grant 
#0113792. The authors wish to thank Dr. Peng Ning for 
discussions concerning security and privacy protection 
and William Stufflebeam for helpful comments. 

References

[AA03] T. A. Alspaugh and A. I. Ant n. Contrasting Use Case, 
Goal, and Scenario Analysis of the Euronet System, 
Submitted to the 11th IEEE International Requirements 
Engineering Conference (RE’03), 2003. 

[AE01] A. I. Ant n and J. B. Earp. Strategies for Developing 
Policies and Requirements for Secure Electronic Commerce 
Systems, In E-Commerce Security and Privacy, edited by A. 
K. Ghosh, Kluwer Academic Publishers, pp. 29-46, 2001. 

[AE03] A. I. Ant n and J. B. Earp. A Requirements Taxonomy 
to Reduce Website Privacy Vulnerabilities, To Appear: 
Requirements Engineering Journal, Springer-Verlag, 2003. 

[AEP01] A. I. Ant n, J. B. Earp, C. Potts, and T. A. Alspaugh. 
The role of Privacy and Privacy Values in Requirements 
Engineering, IEEE 5th International Symposium on 
Requirements Engineering (RE’01), pp. 138-145, 2001.

[AEC02] A. I. Ant n, J. B. Earp and R. A. Carter. Aligning 
Software Requirements with Security and Privacy Policies, 
Proc. of International Workshop on Requirements 
Engineering for Software Quality (REFSQ’02), 2002. 

[AER02] A. I. Ant n, J. B. Earp and A. Reese. Analyzing Web 
Site Privacy Requirements Using a Privacy Goal Taxonomy, 
Proc. of the 10th Anniversary IEEE Joint Requirements 
Engineering Conference (RE'02), Sep. 2002. 

[AMP94] A. I. An n, W. M. McCracken and C. Potts. Goal 
Decomposition and Scenario Analysis in Business Process 
Reengineering, Proc. of the 6th International Conference on 
Advanced Information Systems Engineering (CAiSE’'94),
Utrecht, The Netherlands, pp. 94-104, 6-10 June 1994. 

[Ant96] A. I. Ant n. Goal-Based Requirements Analysis, Proc.
of the 2nd IEEE International Conference on Requirements 
Engineering (RE'96), pp. 136-144, April 1996. 

[AP98] A. I. Ant n and C. Potts. The Use of Goals to Surface 
Requirements for Evolving Systems, Proc. of the 1998 
International Conference on Software Engineering 
(ICSE’98), pp. 157-166, Kyoto, Japan, ACM, April 1998. 

[AS00] G.-J. Ahn and R. Sandhu. Role-Based Authorization 
Constraints Specification, ACM Transaction on Information 
and Systems Security, Vol. 3 (4), pp. 207-226, Nov. 2000. 

[BJW02] C. Bettini, S. Jajodia, X. Wang, and D. Wijesekera. 
Obligation Monitoring in Policy Management. Proc. of the 
3rd International Workshop on Policies for Distributed 
Systems and Networks (POLICY 2002), IEEE, 2002. 

[Cav03] V. Cavalli-Sforza et al. Enabling Transnational 
Collection, Notification, and Sharing of Information, 
Accepted, to appear in Proc. of the 2003 National 
Conference on Digital Government Research, May 2003. 

[CIN02] R. Crook, D. Ince, and B. Nuseibeh. Towards an 
Analytical Role Modelling Framework for Security 
Requirements, Proc. of the 8th International Workshop on 
Requirements Engineering: Foundation for Software Quality 
(REFSQ’02), Essen, Germany, 2002. 

[Coc97] A. Cockburn. Structuring Use Cases with Goals, 
Journal of Object-Oriented Programming, Vol. 10 (5), pp. 
56-62, 1997. 

[Coy96] E. J. Coyne. Role Engineering, Proc. of the 1st ACM 
Workshop on Role-Based Access Control (RBAC’96),
Gaithersburg, MD, 1996. 

[DD82] D. E. Denning and P. J. Denning, Cryptography and 
Data Security, Addison-Wesley, 1982. 

[Eli02] Eli Lilly Settles FTC Charges Concerning Security 
Breach, Federal Trade Commission, 
http://www.ftc.gov/opa/2002/01/elililly.htm, January 2002. 

[Eps02] P. A. Epstein. Engineering of Role/Permission 
Assignments, Ph.D. Dissertation, School of Information 
Technology and Engineering, George Mason University, 
Fairfax, VA, 2002. 

[ES01] P. Epstein and R. Sandhu. Engineering of 
Role/Permission Assignments, Proc. of the 17th Annual 



124

Computer Security Applications Conference (ACSAC 2001),
pp. 127-136, IEEE, 2001. 

[ES99] P. Epstein and R. Sandhu. Towards A UML Based 
Approach to Role Engineering, Proc. of the 4th ACM 
Workshop on Role-Based Access Control (RBAC’99), pp. 
135-143, 1999. 

[FH97] E. B. Fernandez and J. C. Hawkins. Determining Role 
Rights from Use Cases, Proc. of the 2nd ACM Workshop on 
Role-Based Access Control (RBAC’97), pp. 121-125, 1997. 

[FIP98] Fair Information Practice Principles, Privacy Online: A 
Report to Congress (Part III), FTC, 
http://www.ftc.gov/reports/privacy3/fairinfo.htm, June 1998. 

[Fis01] S. Fischer-Hübner. IT-Security and Privacy, Lecture 
Notes in Computer Science 1958 (LNCS 1958), Springer-
Verlag, 2001. 

[FSG01] D. F. Ferraiolo, R. Sandhu, S. Gavrila, et al. Proposed 
NIST Standard for Role-Based Access Control, ACM
Transactions on Information and System Security, Vol. 4 
(3), pp. 224-274, August 2001. 

[GF91] S. J. Goldsack and A. C. W. Finkelstein. Requirements 
Engineering for Real-Time Systems, Software Engineering 
Journal, Vol. 6 (3), pp. 101-115, May 1991.

[GHS00] J. Goldman, Z. Hudson and R. Smith. Privacy: Report 
on the Privacy Policies and Practices of Health Web Sites,
California HealthCare Foundation, January 2000 
http://www.chcf.org/topics/view.cfm?itemID=12497. 

[GLB01] Gramm-Leach-Bliley Act: Financial Privacy and 
Pretexting, Federal Trade Commission, 
http://www.ftc.gov/privacy/glbact/index.html. 

[He03a] Q. He. Privacy Enforcement with an Extended Role-
Based Access Control Model, NCSU Computer Science 
Technical Report, TR-2003-09, 2003. 

[He03b] Q. He. A Goal-driven Role Engineering Process for 
Privacy-Aware RBAC Systems, Submitted to the 11th IEEE 
International Requirements Engineering Conference 
(RE’03) Doctoral Symposium, 2003. 

[HIP96] The 1996 Health Insurance Portability and 
Accountability Act (HIPAA), HEP-C ALERT, 
http://www.hep-c-alert.org/links/hippa.html.

[HIP03] Case Study - How HIPAA affects a patient visit,
NPower NY, http://www.npowerny.org/case+study+6.pdf, 
2003.

[Kai00] H. Kaindl. A Design Process Based on a Model 
Combining Scenarios with Goals and Functions, IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 30 (5), 
pp. 537-551, Sep. 2000. 

[Kai95] H. Kaindl. An Integration of Scenarios with their 
Purposes in Task Modeling, Proc. of the 1995 Symposium 
on Designing Interactive Systems: Processes, Practices, 
Methods, and Techniques (DIS'95), pp. 227-235, ACM, 
Aug. 1995. 

[Kav02] E. Kavakli. Goal-Oriented Requirements Engineering: 
A Unifying Framework, Requirement Engineering Journal,
Vol. 6 (4), pp. 237-251, 2002. 

[KKC02] A. Kumar, N. Karnik, and G. Chafle. Context 
Sensitivity in Role-based Access Control, ACM SIGOPS 
Operating Systems Review, pp. 53-66, July, 2002. 

[KKS02] A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett. 
Observations on the Role Life-Cycle in the Context of 
Enterprise Security Management, Proc. of the 7th ACM 
Symposium on Access Control Models and Technologies 
(SACMAT’02), pp. 43-51, 2002. 

[KS02] G. Karjoth and M. Schunter. A Privacy Policy Model 
for Enterprises, Proc. of the 15th IEEE Computer Security 
Foundations Workshop, pp. 271-281, IEEE, 2002. 

[Lam01] A. van Lamsweerde. Goal-Oriented Requirements 
Engineering: A Guided Tour, Proc. of the 5th International 
Symposium on Requirements Engineering (RE’01), pp. 249-
262, IEEE, 2001. 

[NS02] G. Neumann and M. Strembeck. A Scenario-driven Role 
Engineering Process for Functional RBAC Roles, Proc. of 
the 7th ACM Symposium on Access Control Models and 
Technologies (SACMAT’02), pp. 33-42, 2002. 

[OEC80] OECD Guidelines on the Protection of Privacy and 
Transborder Flows of Personal Data. Organization of 
Economic Cooperation and Development (OECD), 1980, 
http://www1.oecd.org/publications/e-book/9302011E.PDF.

[OSM00] S. Osborn, R. Sandhu and Q. Munawer. Configuring 
Role-Based Access Control to Enforce Mandatory and 
Discretionary Access Control Policies, ACM Transactions 
on Information and System Security, Vol. 3 (2), pp. 85-106, 
May 2000. 

[P3P02] The Platform for Privacy Preferences 1.0 (P3P1.0) 
Specification, The World Wide Web Consortium, April 16, 
2002, http://www.w3.org/p3p/.

[RSA98] C. Rolland, C. Souveyet, and C. B. Achour. Guiding 
goal modeling using scenarios, IEEE Transactions on 
Software Engineering, Vol. 24 (12), pp. 1055-1071, 1998. 

[RSW00] H. Roeckle, G. Schimpf, and R. Weidinger. Process-
Oriented Approach for Role-Finding to Implement Role-
Based Security Administration in a Large Industrial 
Organization, Proc. of the 5th ACM Workshop on Role-
Based Access Control (RBAC’00), pp. 103-110, 2000. 

[RZF01] C. N. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. 
SPL: An Access Control Language for Security Policies 
with Complex Constraints, Proc. of Network and Distributed 
System Security Symposium (NDSS’01), pp. 89-107, 2001. 

[SCF96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. 
Youman. Role-Based Access Control Models, IEEE
Computer, Vol. 29 (2), pp. 38–47, Feb. 1996.

[Sch00] G. Schimpf. Role-Engineering Critical Success Factors 
for Enterprise Security Administration, Proc. of the 16th

Annual Computer Security Applications Conference 
(ACSAC’00), 2000. 

[SMaRT03] Scenario Management and Requirements Tool. 
http://tigger.csc.ncsu.edu/~smart/ 

[Toy00] FTC says Toysmart violated child Net privacy law,
Federal Trade Commission, 
http://www.ftc.gov/opa/2000/07/toysmart.htm, 2000. 

[ZAC02] L. Zhang, G.-J. Ahn, B.-T. Chu. A Role-Based 
Delegation Framework for Healthcare Information Systems, 
Proc. of the 7th ACM Symposium on Access Control Models 
and Technologies (SACMAT’02), pp. 125-134, 2002.



  



  


	TOC
	P01
	P02
	P03
	P04
	P05
	P06
	P07
	P08
	P09
	P10
	P11
	P12
	P13
	P14

