
A Reuse-Based Approach to
Determining Secur ity Requirements

Guttorm Sindre

1
, Donald G. Firesmith

2
, Andreas L. Opdahl

3

1 Dept Computer & Info. Science, Norwegian U. Science & Technology
(on leave at Dept MSIS, Univ. Auckland, New Zealand)

2 Software Engineering Institute
3 Dept of Information Science, U. of Bergen, Norway

gut t or s@i di . nt nu. no, donal d_f i r esmi t h@hot mai l . com, andr eas@i f i . ui b. no

Abstract

The paper proposes a reuse-based approach to

determining security requirements. Development for reuse
involves identifying security threats and associated
security requirements during application development
and abstracting them into a repository of generic threats
and requirements. Development with reuse involves
identifying security assets, setting security goals for each
asset, identifying threats to each goal, analysing risks and
determining security requirements, based on reuse of
generic threats and requirements from the repository.
Advantages of the proposed approach include building
and managing security knowledge through the shared
repository, assuring the quality of security work by reuse,
avoiding over-specification and premature design
decisions by reuse at the generic level and focussing on
security early in the requirements stage of development.

1. Introduction

Use cases [1-3] have become popular for eliciting
requirements [4, 5]. Many groups of stakeholders turn out
to be more comfortable with descriptions of operational
activity paths than with declarative specifications of
software requirements [6]. As use cases specifically
address what users can do with the system, they are most
relevant for functional requirements. But lately the
application of use cases has also been investigated in
connection with security and safety requirements, in the
form of misuse cases [7-13], a.k.a. abuse cases [12, 14].

Misuse cases describe interactions that cause harm to
the system or its stakeholders and can be used as an
informal front-end to more formal security requirements
engineering. A closely related topic of research is that of
security use cases [15]. Like misuse cases these describe
interaction sequences where harm is attempted, but unlike

misuse cases, the system ends up preventing or at least
mitigating the damage.

In spite of the growing research interest in misuse
cases, and promising early applications [10, 11, 13], the
approach has yet to be put into large-scale industrial use.
Many software development organizations tend to put
little focus on security requirements, even if these are
increasing in importance [16]. Partly, this may be due to a
lacking understanding of security requirements. Indeed,
even when they attempt to write security requirements,
many developers tend instead to describe design solutions
in terms of protection mechanisms, rather than making
declarative statements about the degree of protection
required [17]. Another reason for neglecting security
requirements may be a perceived shortage of time in
projects with narrow deadlines. For instance, case studies
[18, 19] showed that security requirements were poorly
addressed in several e-commerce projects.

To make misuse case analysis more appealing to
practitioners reuse may be essential – as security
requirements could then be specified more rapidly. As
pointed out already in the 80’s, reuse of requirements
could lead to significant savings in development time and
cost [20]. Although requirements reuse has attracted some
research attention since then, methods suggested from
academia have failed to demonstrate practicality or
scalability [21] – perhaps with the exception of types of
development particularly suited for reuse, such as product
family development [22, 23] or ERP systems
implementation [24].

The purpose of this paper is to provide a reuse-based
methodology for misuse case analysis and the subsequent
specification of security requirements. There are two key
processes in reuse-oriented development [25, 26]:

• Development for reuse, where reusable artifacts
are developed and made available for future

reuse, for instance in a repository / library that
facilitates easy retrieval.

• Development with reuse, where end-user
applications are developed, partly by reusing
artifacts created by the “ for” process.

There are interconnections between these two
processes. Development with reuse can discover
weaknesses of existing components in the reuse
repository, or inspire new ideas for reusable components.
Development for reuse can steer development with reuse
if you are in a position to choose between alternative
projects, picking the one where you have the greatest
potential for reuse. The rest of this paper is structured as
follows: Section 2 deals with development for reuse,
discussing what kinds of artifacts should be developed,
how the reusability of these artifacts should be ensured,
and how the artifacts should be packaged in a repository
for future reuse. Section 3 then addresses development
with reuse, discussing how to identify candidates for
reuse and then adapt them to the specific application.
Section 4 discusses related work, and section 5 makes a
concluding discussion.

2. Development for Reuse
Reuse of systems development artifacts may improve

the quality of development processes and products and
may reduce development costs if each artifact is reused at
least 3–4 times (because it is more expensive to develop
something reusable than something which will be used
only once [27].) To ensure repeated reuse of security
threats and requirements, we must find good answers to
the following questions:

1. Which development artifacts should be stored in
the repository for reuse?

2. How should the repository be organized to best
support reuse?

2.1 The reusable development ar tifacts

As mentioned in the Introduction, applications are
likely to face the same kinds of threats and have similar
categories of required security even if they have different
functional requirements. The challenge for reusability will
be to describe threats and requirements on a sufficiently
generic level, so that detailed differences between
applications (e.g., in functionality, architecture) do not
hamper the possibility for reuse. On the threats and
requirements level, we suggest these types of reusable
artifacts:

• Generic threats, described independently of
particular application domains. Here we will only
look at threats described as misuse cases, but

other forms of representation could also be
envisioned.

• Generic security requirements, again described
independently of the particular application
domain. These can be represented as security use
cases or “system shall” requirements.

• Application-specific threats and requirements.
Apart from including application-specific
terminology, these can be described by misuse
cases and security use cases (and/or “ system
shall” requirements) respectively, much similar to
the generic varieties.

In addition to this, there could have been links further
on to design level specifications, test cases etc.,
integrating reuse efforts across more phases, but this is
not explored in our work so far.

For an example of a generic threat, Table 1 shows a
generic misuse case that represents the threat of spoofing,
i.e., a misuser gaining access to the system by pretending
to be a legitimate user. This is a highly reusable misuse
case, covering many different spoofing attacks. It does not
matter if authentication is done by username+password,
card+PIN, fingerprint scan, voice recognition, human to
human recognition of individuals or something else. The
interaction sequence is inspired by essential misuse cases
[2], which focus on the users’ intentions rather than
concrete actions. In [2] the main motivation for this is to
simplify the interaction and avoid premature design
decisions, but avoidance of premature design will also
increase the reusability of the description.

Table 1: A generic misuse case

Generic Misuse Case: Spoof User Access
Summary: The misuser successfully makes the system
(physical / human / computerized) believe he is a legitimate
user, thus gaining access to a restricted system / service /
resource / building.
Preconditions:

1) The misuser has a legitimate user’s valid means to identify
and authenticate OR

2) The misuser has invalid means to identify and authenticate,
but so similar to valid means that the system is unable to
distinguish (even if operating at its normal capabilities) OR

3) The system is corrupted to accept means of identification
and authentication that would normally have been rejected.
The misuser may previously have performed misuse case
“Tamper with system” to corrupt the system.

Misuser interactions System interactions

Request access / service
 Request identification and

authentication
Misidentify and
misauthenticate

 Grant access / provide service

Postconditions:
1) The misuser can do anything the legitimate user could

have done within one access session AND
2) In the system’s log (if any), it will appear that the system

was accessed by the legitimate user.

For an example of a generic requirement, Table 2

shows one path of the security use case “Access Control” ,
more specifically the one requiring the system to reject
misusers with valid means of identification but invalid
means of authentication.

Table 2: One path of a generic security use case

Generic Security Use Case: Access Control
Path name: Reject invalid authentication

Preconditions:
Misuser has valid means of user identification but invalid
means of user authentication.

System Requirements Misuser
Interactions System

Interactions
System Actions

 Request user
identity and
authentication.

Provide valid user id
but invalid
authentication.

 Reject misuser
by cancelling
transaction.

Attempt
identification,
authentication &
authorization.

Postconditions:
1) Misuser has valid means of user identification but invalid
means of user authentication AND
2) Misuser not authenticated, not granted access AND
3) Access control failure registered.

Just like the generic misuse cases, this generic security

use case is highly reusable – it makes no design
assumptions, and neither does it presuppose any particular
application domain. Access control is a feature wanted in
a wide range of applications. The above use case could be
a representative requirement for accessing an ATM, an
internet entertainment service, or a missile control system.

This example may seem ridiculously simple – which it
also is. But remember that this is just one of several paths
of the security use case, and that the total response to the
threat would encompass more than just one security use
case. For the particular example threat “Spoof user
access” the repository might contain:

• The security use case “Access Control” , with
several paths (more examples are shown in [15]).

• Other security use cases or normal use cases
describing security related functions, e.g., “ Cancel
means of authentication”)

• Requirements described by other means, e.g.,
“system shall” requirements or mitigation points in
misuse cases [8].

Several alternative means of representation will be
necessary here, as security use cases do have some
limitations:

• They are easy to express when the threat is
mitigated during the attempt (in the interaction
path), not so easy for mitigations relating to the
preconditions or postconditions of the threat.

• The are most easy to express for “absolute”
requirements. But in many situations a 100%
secure solution is impossible or infeasible. It can
be noticed that it does not make sense to include
a path in the Access Control use case for the
situation where the misuser has valid means of
identification and authentication, since then – to
the system – the misuser is the legitimate user,
and the system cannot be required to do anything
else than it normally does, namely granting
access.

Examples of other requirements that might be
suggested as a response to the spoofing threat:

• “The means of authentication should have a
stealability index value of [value]”1.

• “Upon issue, the user shall sign a contract obliging
him to keep the means of authentication safe from
misuse, and to report potential compromise within
[time limit]”

• A use case “ Cancel Means of Authentication” , to
be applied when users report possible theft or loss
of their means.

• “The [user] shall be limited to [maximum action]
per [session / time period / …]”

The latter example, with 3 [] brackets, may seem so
vague that one might wonder whether it has any utility in
a reuse repository. But it does serve to remind the
stakeholders of a certain mitigation option that could
otherwise easily be forgotten. An example of an
instantiation will be shown in the next section.

2.2 The organisation of the repository

A meta-model showing Threats and Security
Requirements and the links between them is given in

Figure 1. Threats are what misusers try to achieve,
causing harm to the system, and security requirements
describe the extent to which the system shall be able to
mitigate those threats. Key to understanding the diagram
are the two classes on the way from Threat to Security
Requirement, namely Threat-Requirement Relationship
and Security Requirement Bundle. To start with the latter,
this is a set of requirements that pull together in
mitigating the same threat. It is often interesting to look at

1 This assumes the definition of a (yet non-existing) stealability
index for means of authentication, similar to what exists for
cars. Clearly, less precise statements like ”The means of
authentication shall be difficult to steal” are not useful as
requirements.

such bundles rather than just individual requirements,
because:

• A security requirement bundle is a bigger and
more effective unit of reuse. To the extent that one
requirement is a good unit of reuse, it is still
possible to define a bundle consisting only of that
requirement.

• In many cases, single security requirements
provide little or no protection unless accompanied
by other requirements. For instance, as observed
in [17] identification requirements are seldom of
much value alone – in most cases they must be
accompanied by authentication requirements.

Indeed, it can be observed that a security use case is in
itself a requirement bundle. The example in Table 2
already contains two requirements – a) that the system
shall reject access to users without valid means of
authentication, and b) that failed access attempts shall be
registered. And this is only one path of the bigger use
case, so in total it would encompass several requirements.

The Threat-Security link objects will most commonly
represent “ mitigate” relationships, i.e., that a certain
requirement bundle (e.g., the security use case “Access
Control”) mitigates a threat (e.g., the misuse case “Spoof
User Access”). Another possible relationship is
“aggravate” , i.e., the choice of a requirements bundle may
actually increase the risk for a threat. An example is that a
bundle of Access Control requirements might increase the
risk for Denial of Service (DoS) threats. A classical
example is the suspension of console login for a certain
user after three failed login attempts – a misuser could
then deny access for that user simply by making those
three failed login attempts with that username. In general,
any requirement that the system should suspend access if

sensing an attempted attack might be util ized for DoS
purposes.

The Requirement-Requirement Relationship is used to
register relationships between requirements, e.g., that they
may be overlapping or in conflict. The aggregation from
Threat to Threat Specification enables one threat to have
several parallel representations in terms of format or
language. For instance, the same misuse case could be
written both in English, French and Norwegian, or in the
same language but with different templates, or there could
also be other representations than misuse cases, for
instance in more formal languages (not investigated in
this paper). The upper right part of the diagram shows an
analogous modeling of the requirements side.

The lower left part shows that a Threat can either be a
Generic Threat or an Application-Specific Threat, and one
Generic Threat may have many Application-Specific
instantiations. For instance, the “Spoof User Access”
threat of Table 1 may be instantiated to cover illegitimate
access to an ATM, a building, or an internet entertainment
service. The lower right part of the figure shows that the
requirements side is structured accordingly.

Basing a reuse repository on the above meta-model,
the following two advantages are achieved:

• Security requirements may be searchable via
threats that they are meant to mitigate, rather than
having to search for requirements “directly” . The
“direct” alternative is less useful here – to know
what to look for the developer must have a pretty
clear picture of the requirement already, which
reduces the gain from reuse.

• Security requirements can be packaged in bundles
that give meaningful protection against
commonly seen threats. In most cases this should

Figure 1: Meta-model for repository

be more effective than reusing requirements one
by one and then assembling them in meaningful
bundles on a project-to-project basis.

Having observed these advantages we now turn to
development with reuse.

3. Development with reuse
Figure 2 shoes a UML Activity Diagram that outlines

our suggested approach to development with reuse. The
steps are as follows:

1. Identify critical and/or vulnerable assets: Here
one must identify all the critical and/or vulnerable
assets in the enterprise. A vulnerable asset is
either information or materials that the enterprise
possesses, locations that the enterprise controls or
activites that the enterprise performs.2 The
“and/or” should be noticed specifically. It is
interesting to look at assets that are critical but not
vulnerable because a) further scrutiny may reveal
that they were only believed not to be vulnerable,
and b) their vulnerability might increase in the
future. It is also interesting to look at assets that
are vulnerable but not critical, at least if they are
of the kind that misusers may use as stepping
stones to launch attacks on more critical
resources. For example, a server that holds no
critical information and runs no critical services
might still be used as a zombie in an attack
against other computing resources, perhaps also
in other companies, causing badwill or even
liability to the organization. Starting the security
analysis with a focus on assets ensures that the
final security requirements are anchored in the
protection of materials, information, locations and
activities that are of value to the enterprise.

2. Determine security goals for each asset: For
each critical and/or vulnerable asset identified in
step 1., select the appropriate security goals for
the asset. A security goal is specified in terms of
(1) who are the potential misusers, (2) the type of
security breaches the asset is vulnerable to and (3)
the security level necessary for that type of
breach. For example, the potential misusers may
be Internet script kiddies, business competitors or
disgruntled employees. Examples of security
types are violations of, e.g., secrecy or integrity,
and several of the security threat classifications in
the literature can be used in this step. A possible

2 The most important assets of enterprises, the knowledge and
skills of its workers, is not directly important in an ICT security
context, as they are only vulnerable indirectly, through misuse
of the other, more tangible assets.

taxonomy of security breaches is proposed in
[17]. The security level to be achieved is specified
as a probability that the assets will be kept safe
from the particular type of breach from the
particular type of misuser. Establishing security
goals for all the critical and/or vulnerable assets
ensures that the eventual security requirements
are derived based on thoroughly identified types
of misuers and of security breaches. Also, well-
defined security goals are a prerequisite for
identifying threats. (If you have no goals, there
are no threats either. Even “being killed” is only a
threat if you consider “staying alive” as a goal
and “ life” as an asset.)

3. Identify threats to each asset: For each security
goal identified in step 2, find all the threats that
can prevent the goal from being achieved or
maintained. This is where the repository is used
for the first time. First, find misuse cases in the
repository that involve the right types of misusers
as specified by the goal and, then, select those
misuse cases that threaten the right type of
security breach. Finally, assess whether the
misuse case poses a threat that is relevant given
the security level specified by the goal. For
example, misuse cases that involve the breaking
of cryptographic codes may be a relevant threat to
the security and integrity of banks or military
installations with extremely high security levels,
but not to the security and integrity of student
information in a university information system. In
addition to using the repository, it is of course
necessary to look for threats that are not directly
implied by the determined security goals, because
some security goals may indeed have been
forgotten.

4. Analyze risk for each threat: In its most detailed
form, the specification of threats must include the
risk of the various threats, i.e., the estimated
likelihood of occurrence and cost of the damage if
the threat occurs. Whereas the description of
threats is highly reusable, risks must normally be
determined from application to application. For
example, although both an Internet entertainment
service and a missile control system face the

Identify
Assets

Determine
Security
Goals

Specify
Threats

Specify
Req.s

Analyze
Risks

Figure 2: Development for reuse, process

threat of spoofing, the associated risks may be
quite different.

5. Determine requirements: For each identified
threat, and taking its risk into account, determine
requirements to mitigate the threat. The repository
is used again here. For each threat retrieved from
the repository, one or more associated bundles of
security requirements may be found. For threats
not retrieved from the repository, appropriate
security requirements must be determined and
specified by other means. Even when threats are
retrieved from the repository, additional bundles
of security requirements that mitigate the threat
may be found by other means. Different levels of
mitigation will be needed for different threats, and
requirements workers must select requirements
bundles that together produce the necessary levels
of mitigation for all threats.

When the process is completed, there should be
satisfactory requirements specified for all threats, and
threats should have been investigated for the security
goals of all assets.

In this paper we do not discuss the first two steps any
further (although one might envision some reuse even in
those steps, for instance by means of asset checklists),
neither do we discuss step 4. It is however necessary to
show these steps to illustrate the context in which the
reuse of step 3 and 5 takes place. The activity diagram of
Figure 3 shows the decomposition of the threat
specification (step 3). Three possible ways are suggested
to identify threats:

• Top down Threat search means that you start
from the identified assets and security goals and
then try to search the repository for threats
relevant to such assets / security goals. This
would be best supported if there were attributes
pointing to relevant types of assets or security
goals in the Threat class, or alternatively there
could be separate classes for asset types and goal
types which the threats were then associated with.

• Bottom-up threat search, i.e., starting by looking
at what you have in repository (without regard for
the determined security goals) and then
considering whether different threats described
there are relevant to your application. This might
seem a less systematic approach than the top-
down alternative, and if the repository is big it
might cause a lot of wasted time looking at
irrelevant threats. However, it might be a valuable
corrective to a strict top-down development in
that it gives an extra check that no threats have
been overlooked. As security goals may have

been overlooked in the previous stage (or assets
before that), a strict top-down approach gives no

guarantee that all threats will be discovered.
• Threat brainstorming. This is the option for

threats which cannot be found in the repository
(whether mandated from determined security
goals or not). But of course, whenever a threat has
been suggested by brainstorming, one should
check to make sure it is indeed not covered by the
repository.

Whatever method a threat has been identified by, one
of two situations may occur:

• The repository contains no description that can be
reused for this threat. In rare cases this could
happen even for threats discovered through the
bottom-up approach, i.e., browsing through the
repository the developers come upon a threat that
is indeed relevant to their application, but the
description in the repository is not reusable
enough.

• The repository contains a description that can be
reused for this threat. In this case there are two
new alternatives: Either there is only a generic
threat description that can be reused, this must
then be adapted to an application specific
instantiation. Or there is already a fitting
application-specific variety in the repository, then

[threat lacking,
Nothing to reuse][reusable

threat found]

Adapt
Generic
Threat Descr.

Describe
Threat

Reuse
Specific
Threat Descr.

[specific
threat reusable]

[only generic
threat reusable]

Top-down
Threat Search

Bottom-up
Threat Search

Analyze
Threat
Coverage

Threat
Brainstorming

[coverage OK]

Figure 3: Decomposition of "Specify Threats"

this can possibly be reused as-is, saving even
more work for the developers.

As an example, imagine that the repository contained
the threat “ Spoof User Access” of Table 1, and that this
was retrieved and found relevant in the project at hand –
to develop a new ATM system. Then, the generic misuse
case could be adapted to the application specific misuse
case shown in Table 3 – the only phrases that would have
to be rewritten would be the underlined ones. However, if
there had also been a previous development project for an
ATM system by means of the repository, it might well be
that there already was such an application-specific misuse
case. Then this could be reused directly.

Table 3: Application-specific misuse case

Misuse Case Name: Spoof Customer at ATM
Summary: The misuser successfully makes the ATM believe
he is a legitimate user. The misuser is thus granted access to
the ATM’s customer services.
Preconditions:
1) The misuser has a legitimate user’s valid means of

identification and authentication OR
2) The misuser has invalid means of identification and

authentication, but so similar to valid means that the ATM
is unable to distinguish OR

3) The ATM system is corrupted, accepting means of
identification and authentication that would normally have
been rejected.

Misuser interactions System interactions
Request access
 Request identification and

authentication
Misidentify and
misauthenticate

 Grant access

Postconditions:
1) The misuser can use all the customer services available

to the spoofed legitimate user AND
2) In the system’s log (if any), it will appear that the ATM

was accessed by the legitimate user.

Moving on to step 5, the decomposed activity diagram

for this can be found in Figure 4. When it comes to
requirements, the chance for reuse should be considerable
if a threat was reused – then one can follow the
repository’s links to one or more requirement bundles for
that threat. If the threat had to be specified from scratch,
there are no directly corresponding requirements in the
repository, so the chance for reuse is much smaller. Yet, it
could pay off at least to browse briefly for requirements
related to similar threats, if any.

Either way, it may happen that no requirement bundles
are found satisfactory for reuse, or there may be potential
for reuse. Here the situation is quite similar to the reuse of
threats: It might be that reuse is only possible with
adaptation from the generic level, but one might also be
lucky enough to be able to reuse something from the
specific level, as is. If we take ATM systems as a concrete

example, the Access Control path shown in Table 2 can
be utilized almost directly at the specific level, possibly

only with a slight name change to “ATM Access
Control” . As there is no point in showing the same
example twice, we instead show an authorization
example. An instantiation of the generic requirement
“ The [user] shall be limited to [maximum action] per
[session / time period / …] ” could be “ The ATM
customer shall be limited to withdrawing maximum 1000
USD of cash per week” – not preventing spoofing but at
least reducing the damage for the cases when it does
occur. It would also be possible to express this as a path
of a security use case, and although the “shall”
requirement is probably simpler and better to use in this
case, we show it for illustration in Table 4.

Table 4: A specific security use case

Security Use Case: ATM Authorization
Path name: Reject withdrawal beyond weekly limit

Preconditions:
1) Misuser has gained access to ATM customer services, e.g.,
by a successful “Spoof User Access”.
2) The account has a weekly cash withdrawal limit of USD
1000, of which Y < 1000 has currently been withdrawn.
3) Account balance B > 1000 - Y

Misuser Interactions System Interactions

Request to withdraw Z1 >
X - Y

 Deny withdrawal as exceeding
weekly limit

Request to withdraw Z2 <=
X - Y

 Accept withdrawal, dispense
cash

Postconditions:
1) The misuser will max. have been able to withdraw X.
2) New Account Balance B is old B – Z2

[Nothing
to reuse]

[threat reused]

Adapt
Generic
Bundle(s).

Evaluate
Related
Bundles

Reuse
Specific
Bundle(s)

[specific
bundle reusable]

[only generic
threat reusable]

Analyze
Threat
Coverage [coverage OK]

Evaluate
Bundles of
Similar Threats

[threat not reused]

Specify More
Reqs

[not OK]

Figure 4: Decomposition of "Specify Req.s"

When threats have been analyzed, determining the

level of security needed towards various threats, follow
the repository links from the threats side to the
requirements side, to look at alternative requirements to
mitigate the relevant threats – and choose those most
appropriate to the needed security levels.

The chosen generic security requirements should then
be adapted to application specific ones. In some cases
hardly any rewriting is needed, in other examples it may
be necessary to change some terms to application specific
ones, and to quantify requirements where the generic ones
only indicate the possibility to quantify, e.g., changing
<time limit> with an actual time limit or X% with a
number.

4. Related Work
Reuse of requirements has been investigated by

researchers for quite a time, e.g., reusing fragments of
domain knowledge through inheritance [28], reuse by
analogy of structure [29], semantic matching [30], or by
clustering of specification diagrams [31]. Our approach
differs from these in its specific focus on security
requirements (contrary to, e.g., functional requirements),
and the investigation of one particular form of
representation as a vehicle for reuse (misuse cases).

Reuse of use cases or scenarios has been investigated
by, e.g., [32, 33], through use case patterns and retrieval
based on some concept of similarity. Our suggested
approach also differs from these in its particular focus on
security requirements. Also, the ideas concerning retrieval
seem to be different. With use cases / scenarios (typically
expressing functional requirements), the idea seems to be
that the developer knows to some extent what he is
looking for (e.g., being able to partially describe a use
case), and then the system will suggest something
similar). Our idea with reuse based on misuse cases,
however, is that the reuser might not know what he is
looking for. Indeed the highest benefits of reuse might be
in cases where the developer, browsing the library,
becomes aware of a threat to the system that he had no
idea of beforehand (and would thus have overlooked).
Hence, one can envision the repository structure being
used more in a checklist manner, looking at all the various
threat categories and considering whether they are
relevant for the application to be developed, rather than
specifying something vaguely and then searching for it.
This means that the reuser’s interaction with the
repository will be more dominated by taxonomy-
supported browsing than by massive automated searches.

A work that deals with reuse of security requirements
– therefore being particularly close in topic to ours – is

the SIREN approach by Toval et al. [34]. This approach
suggests a repository of security requirements initially
populated by using MAGERIT, the Spanish public
administration risk analysis and management method
conforming to ISO15408 (the Common Criteria
Framework [35]). Here, it suggests a process with the
following 4 steps: i) identify assets, ii) identify
vulnerabilities (threats to assets), iii) analyze risks, iv)
choose countermeasures. This is quite similar to our
process for development with reuse of Figure 2: steps (i)
are identical, our step (iii-iv) are similar to their (ii-iii).
There are two differences, though:

• We suggest a step 2 of identifying security goals
for each asset before going on to threats. Our
argument for this is that the definition of security
goals should precede threats.

• Our step 5 is the identification of requirements,
while their parallel step 4 talks about
countermeasures. As argued in [17], the
premature specification of design in terms of
countermeasures is unlucky – one should first try
to express pure requirements (e.g., what level of
protection is needed, rather than how to achieve
that protection in terms of architectural
mechanisms). The examples in [34] do indeed
indicate some design tendencies in the suggested
requirements (e.g., passwords, firewalls).

In addition to the 4 steps from MAGERIT, SIREN also
suggests a larger scale process, based on a Spiral model
(but concentrating on requirements engineering, not the
entire development). Yet this process is much wider than
what is addressed in our paper, the SIREN process deals
with all tasks concerning the requirements specification –
selection from the repository, elicitation, negotiation,
specification, validation. We look more narrowly and in
more detail only at the activities directly related to reuse.

The suggested method addresses many things not
addressed in our work, e.g., organizing assets in 5 levels,
and defining a requirements document hierarchy with 5
different documents (different kinds of requirements
specifications and test plans). These are not contradictory
with our approach, suggesting that they could supplement
each other. When it comes to the SIREN repository
structure, requirements can be structured according to
domains and profiles – the former reflecting functional
application areas, the latter opening for a possible
structuring according to non-functional aspects (e.g., a
profile for information systems security). Requirements
can be parameterized or non-parameterized. The latter can
be reused directly, whereas the former must have, e.g.,
some values filled in. This does not exactly parallel our
difference between generic and application-specific –
rather, both parameterized and non-parameterized
requirements are on the same level in that respect.

Moreover, SIREN focuses on requirement lists, while we
focus on (mis)use cases, but this is clearly a surface
difference, as there is clearly nothing in the SIREN
approach that excludes the inclusion of use cases in the
repository (and neither would requirement lists be
excluded from our repository). The requirements in the
SIREN repository can be coupled to (or retrieved via) the
aforementioned document structure and the MAGERIT
asset hierarchy. This is different from our approach,
where a) requirements are navigated from threats, not
assets, and b) the threat specifications are seen as the
principal artifacts of reuse, possibly together with
corresponding requirements.

A distinguishing property of our suggestion is thus that
we suggest to reuse specifications of both requirements
and threats, which are closely linked. Apart from the fact
that goals and threats are opposites, their relationship to
requirements are quite the same (e.g., that there can be
many different choices of requirements to address the
same goal or threat). Hence, our approach is also related
to goal-oriented approaches. For instance, the obstacles
discussed in [36] (in connection with the KAOS method)
could be likened to our threats, and [19] (in connection
with the GBRAM approach) discusses the linking of
security/privacy policies and requirements. Also relevant
is the work on trust in i* [37], by which threats can also
be modeled. Rather than contradicting these, our
particular work again looks more narrowly at reuse issues
with one particular form of representation (misuse cases).

5. Discussion and Conclusions
The paper has proposed a reuse-based approach to

determining security requirements. The main weakness is
that our suggested reuse approach has not been tried out
in practice – for which a tool would have to be developed
the repository populated with threats and requirements to
be reused. Yet we contend that the contribution in this
paper at least is a good starting point for such
demonstrations of practicality, with its suggested models
for the repository and reuse process. Development for
reuse involved identifying security threats and associated
security requirements. This can either be done as domain
analysis or during application development, and should
yield a repository of threats and related requirements.
Threats can for instance be expressed as misuse cases and
requirements as security use cases. Development with
reuse involved identifying security assets, setting security
goals for each asset, identifying threats to each goal,
analyzing risks and determining security requirements,
based on reuse of generic threats and requirements from
the repository. Advantages of the proposed approach
include building and managing security knowledge

through the shared repository, assuring the quality of
security work by reuse, avoiding over-specification and
premature design decisions by reuse at the generic level
and focusing on security early in the requirements stage
of development. The proposed approach may also save
time in the early development phases and produce more
complete requirements, as the repository may prevent
developers from forgetting important threats or
requirements. The generic security requirements show the
developers what level their description should be at
whereas, otherwise, it would be tempting to jump directly
from threats to design mechanisms (or even to
mechanisms directly, without completely understanding
the threats).

The main difference from related work is a specific
focus on the reuse of threats and security requirements,
both described in terms of use cases. On the other hand,
this paper fails to address many issues that are addressed
by related work, hence integration with other approaches
is an interesting topic for further work.

Work on reuse-based determination of security
requirements is still in its early stages, and industrial case
studies are called for. To better support development for
reuse, further work is needed on how to link misuse cases
in the repository to relevant security goals, to better
prepare for development with reuse. The repository
should be implemented in a tool and integrated with
CASE tools. For example, the tool should support
abstraction of application specific threats and security
requirements into generic ones. The tool should also
enforce a common taxonomy and terminology, e.g., for
types of misusers and security breaches, in order to
increase search efficiency.

To better support development with reuse, further work
is needed on method guidance for specifying security
goals, in particular on how to best classify security
threats. Heuristics for setting security levels would also be
helpful. Of course, the tool should support searching for
threats according to misuser and type of security breach,
both exactly and approximately.

Comparing the present proposal to goal- and agent-
oriented approaches to security requirements work is
another path for further work. As emphasized also in
previous publications, misuse case analysis has never
intended to be a full-fledged development approach in its
own right, rather the idea is that it must be integrated with
other approaches.

References
[1] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard,
Object-Oriented Software Engineering: A Use Case Driven
Approach. Boston: Addison-Wesley, 1992.

[2] L. L. Constantine and L. A. D. Lockwood, Software for Use:
A Practical Guide to the Models and Methods of Usage-
Centered Design: ACM Press, 1999.
[3] A. Cockburn, Writing Effective Use Cases. Boston:
Addison-Wesley, 2001.
[4] J. Rumbaugh, "Getting Started: Using use cases to capture
requirements," Journal of Object-Oriented Programming, pp. 8-
23, 1994.
[5] D. Kulak and E. Guiney, Use Cases: Requirements in
Context: ACM Press, 2000.
[6] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer,
"Scenario Usage in System Development: A Report on Current
Practice," IEEE Software, vol. 15, pp. 34-45, 1998.
[7] G. Sindre and A. L. Opdahl, "Eliciting Security
Requirements by Misuse Cases," presented at TOOLS Pacific
2000, Sydney, 2000.
[8] G. Sindre and A. L. Opdahl, "Templates for Misuse Cases,"
presented at REFSQ'2001, Interlaken, 2001.
[9] G. Sindre, A. L. Opdahl, and G. F. Breivik,
"Generalization/Specialization as a Structuring Mechanism for
Misuse Cases," presented at 2nd Symposium on Requirements
Engineering for Information Security, Raleigh, NC, 2002.
[10] I. F. Alexander, "Initial Industrial Experience of Misuse
Cases in Trade-Off Analysis," presented at RE'02, Essen, 2002.
[11] I. F. Alexander, "Misuse Cases, Use Cases with Hostile
Intent," IEEE Software, vol. 20, pp. 58-66, 2003.
[12] J. McDermott, "Abuse-Case-Based Assurance
Arguments," presented at 17th Annual Computer Security
Applications Conference (ACSAC'01), 2001.
[13] I. F. Alexander, "Modelling the Interplay of Conflicting
Goals with Use and Misuse Cases," presented at 8th
International Workshop on Requirements Engineering:
Foundation for Software Quality, Essen, Germany, 2002.
[14] J. McDermott and C. Fox, "Using Abuse Case Models
for Security Requirements Analysis," presented at 15th Annual
Computer Security Applications Conference (ACSAC'99), 1999.
[15] D. Firesmith, "Security Use Cases," Journal of Object
Technology, vol. 2, pp. 53-64, 2003.
[16] R. Crook, D. Ince, L. Lin, and B. Nuseibeh, "Security
Requirements Engineering: When Anti-Requirements Hit the
Fan," presented at IEEE International Requirements Engineering
Conference (RE'02), Essen, Germany, 2002.
[17] D. Firesmith, "Engineering Security Requirements,"
Journal of Object Technology, vol. 2, pp. 53-68, 2003.
[18] A. I. Anton, R. A. Carter, A. Dagnino, J. H. Dempster,
and D. F. Siege, "Deriving Goals from a Use Case Based
Requirements Specification," Requirements Engineering
Journal, vol. 6, pp. 63-73, 2001.
[19] A. I. Anton and J. B. Earp, "Strategies for Developing
Policies and Requirements for Secure Electronic Commerce
Systems," presented at 1st ACM Workshop on Security and
Privacy in E-Commerce, 2000.
[20] T. Biggerstaff and C. Richter, "Reusability Framework,
Assessment and Directions," IEEE Software, vol. 4, pp. 41-49,
1987.

[21] A. van Lamsweerde, "Requirements Engineering in the
Year 00: A Research Perspective," presented at ICSE'2000,
Limerick, Ireland, 2000.
[22] M. Mannion, B. Keepence, H. Kaindl, and J. Wheadon,
"Reusing Single System Requirements from Application Family
Requirements," presented at ICSE'99, Los Angeles, CA, 1999.
[23] R. R. Lutz, "Towards Safe Reuse of Product Family
Specifications," presented at SSR'99, Los Angeles, CA, 1999.
[24] M. Daneva, "Measuring Reuse of SAP Requirements: a
Model-based Approach," presented at SSR'99, Los Angeles,
CA, 1999.
[25] E.-A. Karlsson, "Software Reuse: A Holistic Approach,"
in Wiley Series in Software Based Systems: John Wiley & Sons,
1995.
[26] G. Sindre, R. Conradi, and E.-A. Karlsson, "The
REBOOT Approach to Software Reuse," Journal of Systems and
Software, vol. 30, pp. 201-212, 1995.
[27] W. Tracz, "Software Reuse Myths," ACM SIGSOFT
Software Engineering Notes, vol. 13, pp. 17-21, 1988.
[28] H. Reubenstein and R. Waters, "The Requirements
Apprentice: Automated assistance for requirements acquisition,"
IEEE Software, vol. 17, pp. 226-240, 1991.
[29] N. A. M. Maiden and A. G. Sutcliffe, "Exploiting
Reusable Specifications through Analogy," Communications of
the ACM, vol. 35, pp. 55-64, 1992.
[30] P. Massonet and A. van Lamsweerde, "Analogical
Reuse of Requirements Frameworks," presented at 3rd
International Conference on Requirements Engineering,
Washington DC, 1997.
[31] O. Lopez, M. A. Laguna, and F. J. Garcia, "Reuse-based
Analysis and Clustering of Requirements Diagrams," presented
at 8th International Workshop on Requirements Engineering:
Foundation for Software Quality (REFSQ'02), Essen, Germany,
2002.
[32] W. Lam, "Scenario reuse: A technique for
complementing scenario-based requirements engineering
approaches," presented at 4th Asia Pacific Software Engineering
and International Computer Science Conference (APSEC'97 /
ICSC'97), Hong Kong, 1997.
[33] H. G. Woo and W. N. Robinson, "Reuse of Scenario
Specifications Using an Automated Relational Learner: A
Lightweight Approach," presented at IEEE Joint Conference on
Requirements Engineering (RE'02), Essen, Germany, 2002.
[34] A. Toval, J. Nicolas, B. Moros, and F. Garcia,
"Requirements Reuse for Improving Information Systems
Security: A Practitioner's Approach," Requirements Engineering
Journal, vol. 6, pp. 205-219, 2002.
[35] CCIMB, "Common Criteria for Information Technology
Security Evaluation," Common Criteria Implementation Board,
Technical Report CCIMB-99-031, August 1999.
[36] A. van Lamsweerde and E. Letier, "Handling Obstacles
in Goal-Oriented Requirements Engineering," IEEE
Transactions on Software Engineering, vol. 26, pp. 978-1005,
2000.
[37] E. Yu and L. Liu, "Modelling Trust in the i* Strategic
Actors Framework," presented at 3rd Workshop on Deception,
Fraud and Trust in Agent Societies, Barcelona, 2000.

