

Elicitation of Requirements from User Documentation

Isabel John, Jörg Dörr

Fraunhofer Institute for Experimental Software Engineering (IESE) – Kaiserslautern - Germany
 {john; doerrj}@iese.fraunhofer.de

Abstract

This paper describes an approach for elicitation of
requirements based on existing user documentation. The
approach we describe in this paper supports capturing of
the information found in user documentation of legacy
systems, e.g., user manuals, and the specification of this
information in requirements specifications, using, e.g.,
Use Cases. We propose a conceptual model describing
the transition from user documentation to requirements
artifacts describing common and variable elements of a
product line model or requirements specification. We
present heuristics that allow an easy identification of text
elements in user documents that are then used to create a
significant part of the requirements specification and
product line model, respectively.

1. Introduction

The development of industrial software systems may
often benefit from the adoption of a development cycle
based on the so-called system-families or product lines
approach [19] [6]. This approach aims at lowering
production costs by sharing an overall reference
architecture and concepts of the products, but allows them
to differ with respect to particular product characteristics
in order to e.g. serve different markets. The production
process in product lines is therefore organized with the
purpose of maximizing the commonalities of the product
family and minimizing the cost of variations [13].

In the first stage of a software project, usually called
requirements elicitation [12], the information and
knowledge of the system under construction is acquired.
Especially when developing more than one product,
requirements elicitation is a complex task, in depth
knowledge of the problem domain often is a prerequisite
for a successful product family. Normally, domain
experts with knowledge in the problem or application
domain, have to elicit and model the requirements in an
highly interactive and time consuming process. But when
a company wants to build a new product, or decides to
start a product line, often systems already exist that can
be used as a knowledge base for the new product line
[15].

Therefore, if user documentation is present, it is the
first choice to start the elicitation process for the
information needed in product line modeling as well as in
single system development. User documentation that is
useful as input for product line modeling can be found in
the cases of project-integrating (existing systems under
development will be integrated into the product line),
reengineering-driven (legacy systems have to be
reengineered into the product line) and leveraged product
line engineering (the company sets up a product line
based on a product line that is already in place) [25].
Furthermore, also in case of creating the requirements
specification for a new single system in the product
family, user documentation of recent and current
products can be available.

In this paper we describe an approach for the
elicitation of requirements, described in Use Cases or as
textual requirements specification for product lines and
single systems from existing user documentation. With
the proposed approach, requirements expressed and
modeled within Use Cases, features and textual
requirements specifications can be elicited and specified
based on existing user documentation. For describing
commonalities and variabilities that are elicited from the
legacy documents we use Use Case extensions such as
[11] or [16]. The primary information source used for
elicitation is the user documentation of systems coming
from the same application domain (and often built by the
same organisation) as the product line under
development. By reusing the information from the user
documentation of the recent and existing systems, one
can produce a traceable requirements specification that is
consistent and complete. Furthermore, this kind of
approach ensures a systematic connection between the
requirements specification and the recent and current
systems.

The paper is structured as follows: in Section 2 we
describe product line modeling and the benefits of using
user documentation for elicitation and specification of
requirements. In Section 3, we describe the conceptual
elicitation model, which is the foundation for the
elicitation approach we describe in section 4. As part of
this approach, we present heuristics that are used to map
textual elements in the user documentation to

requirements artifacts that are used to built up a
significant part of the requirements specification and
product line model, respectively. Finally, we conclude the
paper in Section 6.

2. Motivation

Using legacy system description as input for the
requirements engineering phase is on the one hand
motivated by product line engineering and on the other
hand by reuse principles. In this section we will describe
general product line modeling concepts and the influence
of legacy documentation on modeling requirements for
single systems and product lines.

2.1. Product Line Modeling

Product line engineering [6] can be described as a
technology providing methods to plan, control, and
improve a reuse infrastructure for developing a family of
similar products instead of developing single products
separately. This reuse infrastructure manages
commonality and controls the variability of the different
products. Examples for product line approaches are
PuLSE [3], FAST [30] and the SEI Product Line Practice
Initiative [6].

The goal of product line engineering is to achieve
planned domain-specific reuse by building a family of
applications. Distinct from single system software
development there are two life cycles, domain
engineering and application engineering. In domain
engineering the reusable asset base is built and in
application engineering this asset base is used to build up
the planned products. The requirements engineering
phase of product line engineering is generally called
domain analysis or product line modeling. Domain
analysis methods provide processes for eliciting and
structuring the requirements of a domain, or product line.
The results are captured in a domain model. A domain
model must capture both, the common characteristics of
the products and their variations. The domain model is
the basis for creating other reusable assets like a domain
specific language or a component-based architecture. For
a domain analysis method to be applicable it must be
appropriate to the specific context of the organisation and
the application domain and it must provide enough
guidance so that it can be carried out. As in other areas of
software development, the context for each domain
analysis application varies, and methods that are
appropriate in one context will not be in others. This fact

is especially important for domain analysis because of the
compound effects of inappropriate models over multiple
products and over the whole lifecycle. Therefore, a
generally applicable domain analysis method should be
customisable to the context of the application.

Product line modeling extends requirements
engineering for product lines. Apart from general
requirements engineering principles, product line
modeling methods have to emphasise further principles:

• Commonality and Variability
When doing domain analysis the properties of several
products have to be modelled at once. As the planned
products that are analysed during domain analysis
differ in their features and in their requirements, the
commonalities and variabilities between those
products have to be captured and adequately
modelled.

• Instantiation Support
As several products are modelled in one domain
model it must be clear, which part of the model or
which requirement belongs to which product. In order
to have an application specific view on the product,
the instantiation of the generic and variable model for
several products has to be supported.

• Decision Modeling
To get this instantiation support, the decisions that
have be made also have to be captured in a separate
model. This model collects and abstracts the
information on which requirement is instantiated in
which product and it supports the instantiation.

• Traceability
Providing traceability from the requirements to the
product and from the requirements to architecture,
implementation and tests is very important in product
line engineering. As a product line spans over several
products and several releases of the products it has to
be ensured that those two dimensions of traceability
(traceability through products and through lifecycles)
is provided.

• Evolution
Product Lines are a means to cope with evolution.
With product lines evolution in space (the space of
the planned products) is controlled. When doing
domain analysis on a portfolio of planned products
evolutionary aspects are integrated and the evolution
within the product portfolio is captured through
commonality and variability modeling.

There are several approaches for domain analysis or
product line modeling. In most product line modeling
approaches, the integration of legacy systems into the
domain analysis phase is not described in depth. An
overview on domain analysis methods like FODA [18],
ODM [27] or Commonality Analysis within FAST [29]
can be found in several surveys like [8] or [2]. An
approach that is often used is feature modeling [18],
where features are seen as common and variable
characteristics of a system that have some value to the
user. Our elicitation approach supports feature modeling
as with the approach, features can be identified in user
documentation.

The PuLSE-CaVE (Commonality and Variability
Elicitation) approach for elicitation that we describe here
is integrated into the PuLSE-CDA [4] approach that
builds the domain analysis component of the PuLSETM
(Product Line Software Engineering) 1 framework [3].
CDA is customisable to the project context where it will
be applied. This ensures that the method and
workproducts used for modeling are appropriate for the
specific needs. A common basis consisting of a decision
model and primitives is used and the mapping of the
primitives to the modeling elements is made explicit [26].
With the help of the approach described here, information
on legacy systems can be systematically integrated into a
product line model developed with CDA or any other
approach.

2.2. Reusing Documentation in Requirements
Engineering

The information needed to build a requirements
specification for a single system or a product line model
is normally elicited interactively with high expert
involvement (c.f. Figure 1). As domain experts have a
high workload and are often unavailable, high expert
involvement is a risk for the successful introduction of
requirements engineering processes and methods like a
product line engineering approach in an organization.
Systematically using existing documentation of former or
current products like user manuals to support the
elicitation process reduces the expert load and makes the
requirements more trustable. So, systematically
integrating legacy documentation into the requirements
phase has many benefits:
• Benefit 1 – Integration and reuse of textual

information:
This is achieved by integrating existing systems
textual information (e.g., user manuals) into product
line and requirements specifications. By integrating
textual information, not only code can be reused but
all assets built during the previous lifecycles.

1 PuLSE is a registered trademark of Fraunhofer IESE

• Benefit 2 – Feasibility of requirements engineering:
The feasibility of requirements engineering
approaches and of product line modeling will be
supported through these document-based techniques.
A document-based technique can decrease the effort
the domain experts have to spend with interviews
and meetings and leads to a significant reduction of
the expert load. The basic information can be elicited
from documents and the experts can concentrate on
planned innovative functionality.

• Benefit 3 – Increased acceptance of the product line
in the development organization:
The acceptance of the product line within the
organization can be increased by reusing the legacy
information, which was produced within the
organization. There are two reasons for this. First,
the acceptance of the product line is increased
because there is confidence in the quality of the
legacy products. Second, reusing the legacy
information instead of developing everything from
scratch reduces the effort to built the product line.

• Benefit 4 – Better traceability from the product line
to the existing systems:
Traceability to the existing system can be established
only with a systematic approach which supports
linking of legacy assets to the product line model
built during domain analysis. Therefore, it is
important to document the traces from the legacy
documents to the new documents during elicitation
and modeling.

There are some methods from single system
requirements elicitation that describe how to elicit
information from existing documents. Alexander and
Kiedaisch [1], Biddle [5] , von Knethen [29] and the
REVERE Project [24] focus on reusing natural language
requirements in different forms. The QuARS approach
[9], the KARAT approach [28] and Maarek [20] apply

Figure 1 A requirements elicitation process

Documentation
of existing systems

Modeling

(Product Line)
Requirements

Domain
Experts

Requirements/
Product Line

Engineers

Elicitation

commonalities variabilities

Commonalities, variabilities
And instantiation support

Solution
Domain

Knowledge

Problem
Domain

Knowledge

natural language processing or information retrieval
techniques to requirements specifications in order to
improve their quality. The approach that we describe here
overcomes the shortcomings of other approaches by
explicitly considering variability and integrating user
documentation into product line modeling and modeling
of Use Cases.

For product line modeling, single system elicitation
methods cannot be taken as they are, because multiple
documentations have to be compared, commonalities and
variabilities have to be elicited and additional concepts
(e.g. abstractions, decisions) are needed. MRAM [21] is a
method that describes how to analyze and select
appropriate textual requirements for a product line but
their focus is on the transition from domain engineering
rather than on the transition between existing systems and
domain engineering. In ODM [27], the primary goal is
the systematic transformation of artifacts (e.g.,
requirements, design, code, tests, and processes) from
multiple existing systems into assets that can be used in
multiple systems. ODM stresses the use of legacy artifacts
and knowledge as a source of domain knowledge and
potential resources for reengineering/reuse but doesn’t
clearly state how to elicit requirements from documents.

With the approach that we present here we overcome
the shortcomings of the existing approaches for product
line modeling (no explicit elicitation, no systematic
integration of existing documents) and for reusing
requirements from single systems engineering (no
consideration of variability, no use of user
documentation).

3. Conceptual Elicitation Model

In this section we describe a conceptual elicitation
model that is the basis for our elicitation approach
described in section 0. The elicitation model consists of
four parts (see Figure 2):
• A user documentation model describing the elements

that are typically found in user documentations,
manuals and technical specifications (e.g., sections,
glossaries, and lists).

• A requirements concept model describing concepts
that are typically used in requirements specifications

(e.g., roles, activities, functions) independent of the
notation used.

• A variability concept model describing the principle
commonality and variability concepts that can be
found by comparing different documents and that are
used for modeling.

• A requirements artifact model describing elements of
typical single system requirements specifications and
product line models. These elements form a notation
that is used to capture requirements (like Use Case
elements, features or textual requirements). Those
requirements can have, but do not have to have an
explicit representation of variability.

The transition from one stage of the model to another
stage is described by heuristics (specific rules-of-thumb
or arguments derived from experience). These heuristics
describe, e.g., which element of user documentation can
be typically transformed into which requirements
concept. It is also possible to directly transform
requirements concepts into requirements artefacts without
searching for variabilities (see arrow “single system
elicitation” in
Figure 2).

3.1. User Documentation Model

Our user documentation model (see Figure 3)
describes the principal constituents of user documents.
The document types that we analyze are user
documentations or user manuals that describe the
functions and usage of a system and product descriptions
that describe the features and technical details of a
product. A document normally has a title, it often has a
table of contents and a glossary and it consists of several
sections. A TOC entry normally corresponds to a heading
in a section. A glossary consists of a list of terms that are
described in paragraphs. A paragraph consists of
sentences; it can also contain figures, tables and
formulas. A sentence is composed of phrases (language
constructs consisting of a few words) and/or words. A
phrase can also be a link (describing a reference to
something inside or outside the document). Most
elements of the user documentation model have attributes
describing characteristics of this element (like
highlighted for paragraphs and words, or numbered for
lists), the attributes are not shown in the figure. This
model describes the elements of a document on an
adequate level for eliciting requirements concepts.
Requirements concepts can be found in all parts and
subparts of a document with the help of heuristics based
on these elements and their attributes.

Requirements Concept

Requirements Artifact
User Documentation

Variability

User DocumentationUser Documentation

condensed heuristics

Heuristics

single system
elicitation

Figure 2 Overview of the model

3.2. Requirements Concept Model

The requirements concept model (see Figure 4)
describes concepts that can be elicited from user
documentation and that are normally realized or described
by requirements artifacts in requirements specifications.
The model describes the elements independent of a
specific notation (like textual or Use Case representation).
The most general requirements concept is a requirements
element. A requirements element can be everything that is
of value for a requirements specification. A requirements
element can be a user task, a role, data, a naming
convention, a constraint or a relation to something in the
environment of the system to be described. Data can
either be I/O data or internal data, constraints can either
be usage or design constraints. A user task, that describes
the high level task the user wants to perform with the help
of the system can be decomposed into activities, activities
consist of navigation elements, system functions and a
mapping of the activities to functions.

Based on this requirements concept model and the
model of user documentation described in section 3.1 we
can define heuristics for the transition of elements from
one model to another. Example heuristics for
transitioning from a user documentation element to a
requirements element are: “A heading that contains a verb
often is an activity” or “a highlighted sentence
containing the phrase “normally” or “with the exception”
can describe constraints”.

3.3. Variability Model

In the variability model, the variation aspects are
described. In order to find different variability elements,
the requirements elements (from the requirements
concept model) found in different user documentations
are compared. We decided to support the following
variability elements and kinds of variation:
• Commonality

No variation exists in the requirements element, the
same requirements element can be found in all
documentations.

• Optionality
A requirements element exists in some of the
products, but does not exist in some others.

• Alternative
The requirements element exists in two or more
different characteristics in the existing products (e.g.
one product supports one database one product
supports a different one).

• Range
There is a range of values that is supported by the
different products (e.g. the memory size can vary
from 10 to 128 MB).

Based on those variability elements, heuristics can be
defined that identify different variable requirements
concepts by comparing the user documentations of
several legacy products. These heuristics are depicted by
the two arrows in
Figure 2 from user documentation and from requirements
concept to variability.

Examples of such heuristics are “numbers in the
document that were identified as data and belong to the
same function and that have a different value can be a
range variability element” or “ “navigation elements that
occur only in one documentation can be a hint for an
optionality (an optional user interface element)”.

 Figure 3 Model of User Documentation

Figure 4 Requirements Concept Model

User Documentation

Product Description

TOC entry

Document

Table of ContentsTitle

Heading

Section

Paragraph

Glossary

Term

Figure Table

Table Heading

Table Body
Image

Figure Heading
Formula

List

Phrase Word

Link

Number

Sentence

List Element

User Documentation Package

Requirements Element

User Task Data RoleConstraint

Naming Convention
&Definition

I/O DATA Internal DataDesign
Constraints

Usage
Constraints Activity

System FunctionNavigation
(to Systemfct.)

Mapping of Activities
to System Functions

System ReactionUI-Element (Call)

External
relations

Requirements Concept Package

Quality

3.4. Requirements Artifact Model

The fourth package of our conceptual elicitation
model is the requirements artifact model. In this model
different elements of requirements specifications that can
be used for single system modeling and for product line
modeling are described. Different from the requirements
concept model, that describes the elements on a
conceptual or semantic level, the requirements artifact
model describes requirements elements on a syntactic or
notational level. In different kinds of requirements
specifications, the same conceptual elements can be
described with different notational elements, e.g. a role
from the requirements concept model can be an actor in a
Use Case description or a stakeholder description in a
textual requirements specification.

As we also describe the application of our approach
for product line modeling, we have an integrated model
of variability here. The variability model we use here is
the model described in the PhD thesis of Muthig [22]. In
product line engineering, variability has to be made
explicit in the requirements artifacts. Different extension
(e.g. to UML-Use Case diagrams [16][13], or to textual
Use Cases [16]) exist that make the variability explicit
and give support for instantiation of requirements for
application engineering. Some of these extensions use
stereotypes or tags to describe variability, some
extensions use extra elements to make variability explicit.

As variability is encapsulated outside the requirements
artifact model in the product line artifact and the product
line artifact element (see Figure 6), the model can also be
used for specifying single systems requirements. At the
moment we have specified two different kinds of
requirements notations: Use Cases and textual
requirements specifications. We have also specified
artifacts that are more specific to product line modeling
like feature models [18] but we will not describe them in
this paper. Further requirements artefacts will be
integrated into the requirements artifact model. We
added different representations here, as our general
approach to product line modeling [4] is customisable and
highly depends on the requirements elements found in the
organization that wants to do product line engineering.

For doing product line engineering, we put variability
elements on top of the existing notation and so can keep
the notation similar to the one used in the organization
before [26].

Concerning the elements in Figure 6, a Use Case
diagram consists of Use Cases, actors and different
relationships between the Use Cases and the actors. A
textual Use Case (according to Cockburn [7]) consists of
different elements like Use Case goal, precondition post
condition, Use Case exceptions and the actual description
of the Use Case consisting of steps. The form of
requirements specification we describe here follows the
IEEE Standard 830 [14]. A requirements specification is
a textual document consisting of functional, non-
functional and data requirements including project issues
and rationales for the different requirements.

We have defined heuristics for transitioning
requirements concepts into requirements artifacts (e.g., “a
role is described as actor in a Use Case diagram”) and
heuristics that additionally include variability (c.f. Figure
2). An example of such a heuristic also considering
variability is “an optional activity can be represented as
an optional Use Case in a use diagram”.

For the transition between elements of these packages

we have found different heuristics. For users of the
approach and the conceptual model those heuristics can
be integrated to condensed heuristics describing the
transition from user documentation directly to
requirements artifacts (c.f. arrow ”condensed heuristics”
from user documentation to requirements artifact in
Figure 2). The elicitation approach we describe now uses
the heuristics in this direct form to make elicitation easier
when applying the approach.

Figure 5 Variability Model

Figure 6 Requirements Artifact Model

Variability Element

Commonality

Alternative Optionality

Range

Variabilty Model Package

Product Line Artifact

Use Case
Goal

UC Element

Actor

Relationship

Use Case (UC)

Use Case Diagram

Use Case
Step

UC
Precondition

Use Case
Postcondition

Use Case
Exception

Rationale

Data
Requirement

Project Issue
Non-functional
Requirement

Functional
Requirement

Requirements Artifact Package

Product Line Artifact Element

Requirements Specification

All white elements in this diagram can
be Product Line Artifact Elements

Interface
Requirement

4. An elicitation approach using user
documentation

Product Line Engineering includes the construction of
a reusable set of assets. Constructing such a reusable asset
base for specific products in a domain is a more
sophisticated task than the development of assets for a
single system because several products with their
commonalities and variabilities have to be considered.
This implies the planning, elicitation, analysis, modeling
and realization of the commonalities and variabilities
between the planned products.

Usually, the development of a product line is not a
green field task. Legacy systems exist that shall be
integrated into a product line. The information from those
systems is a valuable source for building the reusable
assets. This information from existing systems can be
found in the code, in architecture descriptions and in
requirements specifications [15]. All this information can
be found in documents produced during the lifecycle of
the existing systems.

In this paper, we propose an approach for controlled
elicitation, which guides product line engineers and
domain stakeholders in how to elicit knowledge from
existing documents and how to transform documentation
into product line models. This approach, PuLSE-CaVE
(Commonality and Variability Elicitation) is an approach
for structured and controlled integration of user
documentation of existing systems into the product line
[17]. The approach is compliant with the conceptual
model described in Section 3 and is also very valuable for
single system requirements engineering if legacy
documentation is available.

With the elicitation approach common and variable
features [18], Use Case elements [7], tasks describing
user activities in an interactive system [23] and textual
requirements can be elicited. As existing systems are the
basis for this approach, it can be seen as a reengineering
method for documents transferring user documentation

into basic elements of information for requirements
specifications. The approach was applied in three case
studies [17] [11], further case studies will follow. The
approach consists of the following phases (c.f. Figure 5) :
• Preparation
• Search
• Selection, change and modification.

The first two steps of the approach can be performed
by persons who just have a slight domain understanding,
they do not have to be domain experts. The third step
requires involvement of domain experts as there
documentation entities have to be validated and selected.
We will now describe the three steps in more detail.

4.1. Preparation

Preparation consists of the four sub steps collection,
selection, division and browsing. During collection, user
documentation for the systems that should be integrated
into the product line and of those systems that are related
should be collected to have all needed information
available. In the case of a project-integrating product line
adoption these are all user-documentations of the systems
currently under development (as far as they already
exist), in the case of a reengineering-driven or leveraged
product line adoption all user documentations of existing
systems in the domain have to be considered. As parallel
reading of more than one document requires divided and
increased attention and leads to lower performance [31],
the number of documents to be read in parallel should be
reduced to a minimum. So, if there are more than 3
systems, we recommend to select two or three documents
that cover the variety of systems (e.g., one documentation
of a low-end system, one of a high end system and one
typical system) to compare for a first search in the
documents. The other documents can be used to complete
the elicited information after completing the search
phase.

After selecting the three typical documentations,
divide them into manageable and comparable parts of 3
to 10 pages (e.g., comparable subchapters). In browsing,
for each of those manageable parts (or for a subset of
those parts that includes typical sub domains) browse
through them in order to decide the amount of variability
in them. There are two alternatives:
• For those document parts that differ in less than 30%

of the text compare the documents in parallel in the
following phases.

• For those document parts that differ in more than
30% of the text, process them one after another in
the following phases. Start the analysis with the
biggest document.

Figure 6 An outline of the elicitation approach

Documentation of
existing systems

Preparation

Selected
Documentation

Entities

search,
clustering

classification,

common + variable
model elements

Selection +
change

Domain
Glossary

Parts of
requirements

model

Expert
involvement

Process
Step

Process
Products

Documentation of
existing systems

Preparation

Selected
Documentation

Entities

search,
clustering

classification,

common + variable
model elements

Selection +
change

Domain
Glossary

Parts of
requirements

model

Expert
involvement

Process
Step

Process
Products

4.2. Search

In the search step the identified user document parts
containing documentation elements (c.f section 3.1) are
analyzed and requirements artifacts are searched. The
elements to be identified in the documents, which should
be sized from one word to at most 5-6 lines, are marked
and tagged in the source documents. Common and
variable requirements artifacts that can be identified for
Use Cases are for example Use Case names, actors,
goals, preconditions, steps of descriptions, success
conditions, and extensions. Also features and different
kinds of requirements can be defined.

Common and variable requirements artifacts can be
identified and marked in the text with the following
heuristics The heuristics described here are heuristics that
transform user documentation into requirements artifacts,
so these heuristics build a connection between user
documentation and requirements artifacts by using
requirements concepts and variability (c.f. Figure 2 , the
heuristics described here are condensed heuristics) The
heuristics we show here are just examples, the complete
heuristics can be found in [17]:

Use case elements
• Headings of sections or subsections typically contain

names of Use Cases.
• Phrases like “only by”, “by using”, “in the case of”

can be markers for Use Case preconditions.
• Phrases like “normally” “with the exception”,

“except” can mark Use Case extensions.
• Numbered lists or bulleted lists are markers for an

ordered processing of sequential steps and describe
Use Case descriptions.

• Sentences that describe interactions with the system
in the form of “to do this…do that…” are Use Case
descriptions.

• Passive voice is typically a marker for system activity
(e.g. “The volume of the radio is muted” = the
system mutes the volume of the radio). These
sentences can be used in the Use Case description.

Requirements
• Phrases like “press”, “hold”, “hold down” , “press

briefly”, “select” , “key in” “scroll” etc. mark a
dialogue with the user interface or navigation
elements

• Activities or system functions are those elements that
were marked as features that contain a verb

• Non functional requirements cannot be found
explicitly in user manuals, but hints to non functional
requirements and to qualities can be found. Shortcuts
are alternative usage scenarios and can therefore be a
marker for a non functional requirement like “the
system shall be used in two alternative ways….”

• Adverbs and adjectives (longer, fast, quickly….) can

mark NFRs, especially if a phrase or sentence
appears in the user manual once with the adverb,
once without. (e.g. “to turn off the radio” and “to
quickly turn off the radio”)

• Technical data can give a clue to non-functional
attributes of the system (e.g. size of the display,
battery size etc.)

• Numbers in the identified elements can be hint for a
non-functional requirement (why was exactly this
number chosen?)

Features
• Headings of sections or subsections typically contain

features
• Features can be found in highlighted phrases (bold or

italic font) or in extra paragraphs
• Technical descriptions or short descriptions of a

system often contain lists of features
Commonalities and variabilities

• Arbitrary elements occurring only in one user
manual probably are optional elements.

• Headings or subheadings that only occur in one of
the documentations can be model elements that are
optional as a whole.

• Headings or subheadings that have slightly different
names or headings or subheadings that have different
names but are at the same place in the table of
contents can be hints for alternative model elements.

• Phrases that differ in only one or a few words can be
evidence for alternatives.

• If numerical values in the document differ they can
be parametrical variabilities.

These heuristics form a first set of heuristics that will be
extended in future when applying more case studies.
With the support of these heuristics, which help in
finding a significant part of the requirements artifacts
(i.e., of the requirements specification or product line
model) and variabilities, the user documents should be
marked (e.g., with different colors for different model
elements and for variabilities) and integrated into an
intermediate document. The identified elements should
be extracted from the document and tagged with
attributes containing the information needed for selecting
appropriate elements for modeling the product lines
requirements. Table 1 shows the elements of such a
notation.

4.3. Selection

In the last step, selection, the extracted and tagged
elements have to be checked and possibly adjusted by a
domain expert. The domain expert will change the
elements regarding the following aspects:
• Is a text element that was marked as a possible

requirements artifact really a requirements artifact

that shall be integrated into the requirements
specification and product line model, respectivelly?

• Is an element marked as optional/alternative really an
optional/alternative element in the new product line?

• In case we have want to build a product line: Are the
product line models to be built out of the elements
the right models to describe the systems of the
product line?

The relations (see Table 1) are used to make comparisons
between the documents easier, to establish traceability to
the source documents and, with tool based selection, to
support navigation in the elements and between the sets
of documents.

4.4. Results

The results of the approach are approved requirements
artifacts that can easily be integrated in requirements
specifications and product line model elements,
respectively. Which model elements should be elicited
depends on what the modeling approach used needs as
primitives. The relations (see last lines of Table 1) are
used to make comparisons between the documents easier,
to establish traceability to the source documents and, with
tool based selection, to support navigation in the elements
and between the sets of documents. With these elements
the domain expert and the requirements engineer can
build Use Cases and requirements using the information
about the elements collected in the tags.

We have applied the approach in three case studies
until now, one of the case studies is described in [11], the
others will be described in [17]. In two of the case studies
we analyzed user documentation from the embedded
system domain, one case study was from the information
systems domain. In the case studies use case elements,
functional and non-functional requirements and features
were the primary elements found by comparing the
documentation of three to five legacy systems.

5. Conclusions

In this paper we described an approach for elicitation
and specification of requirements specifications and
product line models, respectively, based on existing user
documentation. Use Cases, which are quite common in
single system requirements engineering are also often
used in product line engineering to model requirements
on a line of systems. The approach we described here
supports capturing of the information found in user
documentation of legacy systems to use them in
requirements specifications and product line models,
respectively. We presented heuristics that allow an easy
identification of text elements in user documents based
on a conceptual model.

With the help of a supporting tool, the selection of the
text elements and the tagging with the attributes could be
performed semi-automatically. The process of analyzing
a user manual in a semi-automated process opens up the
possibility to capitalize on the wealth of domain
knowledge in existing systems considered for migration
to next-generation systems. Converting these existing
requirements into domain models can reduce cost and
risk while reducing time-to-market.

Acknowledgements
This work was partially supported by the Eureka

Σ!2023 Programme, ITEA , Ip00004, Project CAFÉ and
Ip00103, Project Empress.
We want to thank Alessandro Fantechi, Stefania Gnesi
and Guiseppe Lami for performing the joint case study
described in [11] that influenced the work described here.

 References
[1] I. Alexander and F. Kiedaisch. Towards recyclable

system requirements. In Proceedings of ECBS’02, Lund,
Sweden, 2002.

Table 1 Attributes for the elicited document parts
Attribute Values Description

ID e.g. 1…n or docnumber.nr A unique identifier for the element
Value Text The text of the element that was found in the document
Document Identifiers The identifiers of the documents this element was found in
Requirements
Artifact Type

Requirements
Artifact

The reqirements artifacts (Use Case description, precondition, feature,
textual requirement..) the text matches to

Var Type commonality, optionality,
alternative, range

The hypothesis for the variability type of the element (default is
commonality)

Parent ID The element, this element is part of

relations
Requirements Artifact
Name

A possible requirements artifact this element is related to

Var
relations

List of IDs The IDs of other elements that contain alternatives or different parameters
for this element

[2] G. Arango. Domain analysis methods. In W. Shaefer, R.
Prieto-Diaz, and M. Matsumoto, editors, Software Reusability.
Ellis Horwood, 1993.

[3] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K.
Schmid, T. Widen, and J.-M. DeBaud. PuLSE: A Methodology
to Develop Software Product Lines. In Proceedings of the
Symposium on Software Reusability (SSR’99), Los Angeles,
CA, USA, May 1999. ACM.

[4] J. Bayer, D. Muthig, and T. Widen. Customizable
Domain Analysis. In Proceedings of GCSE '99, Erfurt,
Germany, September 1999

[5] Robert Biddle, James Noble, and Ewan Tempero.
Supporting Reusable Use Cases. In Proceedings of the Seventh
International Conference on Software Reuse, April 2002.

[6] P. C. Clements and L. Northrop. Software Product
Lines: Practices and Patterns. SEI Series in Software
Engineering. Addison-Wesley, August 2001

[7] A. Cockburn. Writing Effective Use Cases. Addison
Wesley, 2001.

[8] J.-M. DeBaud and K. Schmid. A Practical Comparison
of Major Domain Analysis Approaches - Towards a
Customizable Domain Analysis Framework. In Proceedings of
SEKE’98,San Francisco, USA June 1998.

[9] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The
linguistic approach to the natural language requirements quality;
benefit o the use of an automatic tool. In Proceedings of the
26th Annual IEEE Computer Society Nasa Goddard Space
Flight Center Software Engineering Workshop, 2001.

[10] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari,
Application of Linguistic Techniques for Use Case Analysis,
RE’02, Essen, Germany, September 2002

[11] A. Fantechi, S. Gnesi, I.John, G.Lami, J. Dörr
Elicitation of Use Cases for Product Lines. Submitted to RE ‘03,
2003

[12] J. A. Goguen, Charlotte Linde, Techniques for
Requirements Elicitation, Proceedings of the 1st International
Symposium on Requirements Engineering, p.152-163, 1993

[13] G. Halmans, K. Pohl Communicating the Variability of
a Software-Product Family to Customers Journal of Software
and Systems Modeling, Springer, 2003 to appear

[14] IEEE-Std 830-1998 IEEE Guide to Software
Requirements Specifications, The Institute of Electrical and
Electronics Engineers, New York, 1998

[15] I. John. Integrating Legacy Documentation Assets into a
Product Line. In: Proceedings of the Fourth International
Workshop on Product Family Engineering (PFE-4), Bilbao,
Spain, October 2001.

[16] I. John, D. Muthig, Tailoring Use Cases for Product
Line Modeling, REPL’02, Essen, Germany, September 2002

[17] I. John, J. Dörr. Extracting Product Line Model
Elements from User Documentation. Technical Report,
Fraunhofer IESE, 2003, to appear

[18] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

[19] F. van der Linden. Software Product Families in
Europe: The Esaps and Café Projects. IEEE Software, 19(4):41-
-49, July/August 2002.

[20] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. GURU:
Information retrieval for reuse. In P.Hall, editor, Landmark
Contributions in Software Reuse and Reverse Engineering.
Unicom Seminars Ltd, 1994.

[21] M. Mannion, B. Keepence, H. Kaindl, and J. Wheadon.
Reusing Single System Re-quirements for Application Family
Requirements. In Proceedings of the 21st International
Conference on Software Engineering (ICSE’99), May 1999.

[22] Dirk Muthig A Light-weight Approach Facilitating an
Evolutionary Transition Towards Software Product Lines. PhD
Theses in Experimental Software Engineering. Dissertation,
Fraunhofer IRB, 2002.

[23] B. Paech and K. Kohler. Task–driven Requirements in
Object-oriented Development. In Leite, J., Doorn, J., (eds)
Perspectives on Requirements Engineering, Kluver Academic
Publishers, 2003, to appear

[24] P. Rayson, L. Emmet, R. Garside, and P. Sawyer. The
REVERE project: experiments with the application of
probabilistic NLP to systems engineering. In Proceedings
NLDB’2000. Versailles, France, June, LNCS 1959, 2000.

[25] K. Schmid and M. Verlage. The Economic Impact of
Product Line Adoption and Evolution. IEEE Software,
19(4):50--57, July/August 2002.

[26] K. Schmid and I. John. Generic Variability
Management and its application to Product Line Modeling in
Proceedings of the First Workshop on Software Variability
Management, Groningen, 2003.

[27] Software Technology for Adaptable, Reliable Systems
(STARS). Organization Domain Modeling (ODM) Guidebook,
Version 2.0, June 1996.

[28] B. Tschaitschian, C. Wenzel, and I. John. Tuning the
quality of informal software requirements with KARAT. In
Proceedings of REFSQ’97, 1997.

[29] A. v. Knethen, B. Paech, F: Kiedaisch und F. Houdek.
Systematic Requirements Recycling through Abstraction and
Tracability. Proceedings of RE02, Essen, 2002.

[30] D. M. Weiss and C.T.R. Lai. Software Product Line
Engineering: A Family Based Software Development Process.
Addison-Wesley, 1999.

[31] C.D. Wickens. Processing resources in attention. In R.
Parasuraman & R. Davies (eds.), Varieties of attention (pp.63-
101). New York, 1984, Academic Press.

