
Eliciting Efficiency Requirements with Use Cases
J. Dörr, D. Kerkow, A. von Knethen, B. Paech

Fraunhofer IESE, Sauerwiesen 6, 67661 Kaiserslautern, Germany
{doerrj, kerkow, vknethen, paech}@iese.fraunhofer.de

Abstract
Non-functional requirements provide the glue between
functional requirements and architectural decisions.
Thus, it is important to elicit and specify the non-
functional requirements precisely. In practice, however,
they are mostly neglected. In this paper, we sketch an ap-
proach developed in the context of the EMPRESS project,
which allows efficiency requirements to be elicited in con-
junction with use case. This is part of a more general, ex-
perience-based approach to elicit and specify non-
functional requirements in concert with functional re-
quirements and architecture.

1. Introduction
The last few years have seen a growing awareness of the
requirements engineering community for architectural is-
sues and vice versa. Several authors argued convincingly
for the tight interdependencies between functional re-
quirements (FRs), non-functional requirements (NFRs)
and architectural options (AOs) that need to be made ex-
plicit early, for example, [1], [2].

While there are many established methods for the specifi-
cation of FRs, for instance, use cases [3], and several ap-
proaches for specifying AOs, for example, patterns [4],
there is little guidance available on how to elicit and spec-
ify NFRs in concert with FRs and AOs. The problem is
that different kinds of NFRs, such as efficiency or security
requirements, need to be treated differently. The different
communities concentrating on the different NFRs exem-
plify this. Thus, it seems difficult to define one method to
cope with all NFRs.

In this paper, we propose an approach for specifying effi-
ciency requirements in concert with use cases and, if
available, a high-level architecture. This method is so far
tailored to efficiency requirements, but we believe that it
can be generalized also to other NFRs, such as reliability
requirements. We believe this because our approach is
based on some general characteristics that can then be
used for each type of requirement (e.g., efficiency, reli-
ability, maintainablity requirements).

The main goal of our approach is to achieve a minimal,
complete and focused set of measurable and traceable
NFRs. The quality criteria on NFRs mentioned are a sub-
set of the general quality criteria on requirements defined
by the IEEE-Std. 830 [5].

• Minimal means that only necessary NFRs are stated so
that the design space is not restricted prematurely.

• Complete means that all NFRs of the stakeholders
(e.g., customer and developer) are captured.

• Focused means that the impact of the NFRs on the so-
lution is clear. A NFR, for example, may concern the
system context (namely the customer processes), the
system, a FR, or an AO. This supports unambiguity in
the sense of the IEEE Std. 830.

• Measurable means that a metric is given on how to
verify that the system satisfies the NFRs. This supports
verifiability and unambiguity in the sense of the IEEE
Std. 830.

• Traceable means that rationales are given that describe
why the NFR is necessary and how it is refined into
subcharacteristics. This also supports modifiability in
the sense of the IEEE Std. 830.

Our main focus has not been on eliciting consistent NFRs
so far. However, our approach includes a consolidation
step, where dependencies between elicited NFRs are
checked. When specifying means to achieve certain NFRs,
consistency has to be treated with more attention.

To accomplish the different quality criteria of the IEEE
Std. 830, our approach provides:
• a quality model that captures general characteristics of

efficiency (quality attributes), metrics to measure these
quality attributes, and means to achieve them. In par-
ticular, this model reflects views of different stake-
holder roles, such as customer and developer. This
quality model supports measurability, completeness as
well as focussedness due to the views.

• a distinction of different types of quality attributes,
which gives guidance on how to elicit NFRs. This spe-
cific treatment for the various types supports focuss-
edness of the NFRs.

• detailed elicitation guidance in terms of checklists and
a priorisation questionnaire. The former are derived
from the quality model and the types of quality attrib-
utes and help to elicit efficiency NFRs in concert with
use cases and a high-level architecture. The latter is
used to prioritize high-level quality attributes (i.e.,
maintainability, efficiency, reliability, usability). The

checklists support completeness, the priorization ques-
tionnaire supports the focussedness of the NFRs.

• a template, which embeds use cases into a full-fledged
requirements documents and provides specific places
for documenting NFRs. This template supports trace-
ability from NFRs to FRs, completeness and focussed-
ness.

• the use of rationales to justify each NFR. Using ration-
ales supports minimality of the set of NFRs.

The paper is structured as follows. In Section 2, we sketch
our terminology and explain the notation of the quality
model. Then, we present our approach by way of an ex-
ample. Section 4 summarizes our experience and Section
5 discusses related work. We conclude with an outlook on
future work.

2. Terminology
This section describes the foundation of our approach.
Subsection 2.1 points out a metamodel that describes the
basic concepts of our approach. Subsection 2.2 gives an
overview on the “quality model”, which instantiates parts
of the metamodel.

2.1. Metamodel
The metamodel describes the main concepts we are deal-
ing with (see Figure 2). In the following, we explain the
most important ones.

• A quality attribute (QA) is a non-functional character-
istic of a system, user task, system task, or organiza-
tion. Quality attributes of the organization include de-
velopment process specific aspects.

The distinction between different types of quality
attributes is important for our elicitation process. Each
type of quality attribute is elicited differently (see Sec-
tion 3). QAs can be refined into further QAs. In addi-
tion, QAs can have positive or negative influences on
each other. A more detailed description of the types of
QAs and their relationships can be found in Section
2.2.

• A system (e.g., “wireless control and monitor system”)
can be refined into a set of subsystems (e.g., “wireless
network”, “mobile device”). Architectural require-
ments (e.g., “the system shall have a database”) con-
strain the system.

• We distinguish between two types of tasks: user tasks
and system tasks. User tasks are tasks, a certain users
has to perform. They are supported by the system (e.g.,
“monitoring of certain machines”), but include some
user involvement. System tasks are tasks the system
performs. In contrast to user tasks, the user is not in-
volved in system tasks. Tasks can be refined into fur-
ther tasks. User tasks can be refined into more fine-
grained user tasks. Furthermore, user tasks can be re-
fined into parts carried out by the user and system

Figure 2: The metamodel

Requirement

Functional Requirement

Non-functional Requirement

Architectural Requirement

Organization

Task

System

Quality Attribute

Organization
Quality Attribute

System
Quality Attribute

User Task
Quality Attribute

Means

ValueMetric Rationale

User Task System Task

SystemTask
Quality Attribute

1

*

1

*

1

*

1

*

1

1..*

describes

1

2..*

refined into

1..*

1..*

justifies

*

*

constrains

1 *

constrains

1

*

measured by

1 1..*

determines

1

1..*

* *

achieved by

*

*has influence on1

*

refined into
*

*
influences

1
*

refined into

tasks (e.g., a user task “monitoring machine x” is re-
fined into a set of system tasks such as “system dis-
plays alarm message if machine runs out of filling”). A
task is described by one or more FRs.

• A NFR describes a certain value (or value domain) for
a QA that should be achieved in a specific project. The
NFR constraints a QA by determining a value for a
metric associated with the QA. For example, the NFR
“The database of our new system shall handle 1000
queries per second.” constraints the QA “workload of
database”. The value is determined based on an asso-
ciated metric “Number of jobs per time unit”. For each
NFR, a Rationale states reasons for its existence (e.g.,
“the user will be unsatisfied if it takes more than 2
seconds to display alarm message”).

• We distinguish problem-oriented refinement (refine-
ment of NFRs according to the constrained QAs) from
solution-oriented refinement of QAs. The latter is
made explicit in terms of means. A means is used to
achieve a certain set of NFRs. In many cases, a means
describes an AO that can be applied to the architecture
to achieve a certain QA (e.g., “load balancing” is used
to achieve a set of NFRs concerning the QA “work-
load distribution”). However, a means can also be
process related (e.g., the means “automatic test case
generation” is used to fulfill NFRs regarding “reliabil-
ity”).

2.2. Quality model
A quality model instantiates parts of our metamodel. It
describes typical refinements of high-level QAs into more
fine-grained QAs, metrics, and means. The idea of the
quality model is to refine QAs into QAs that are measur-
able, i.e., to QAs to which a metric can be associated. In
addition, it describes relationships between different QAs.
Therefore, it captures experience of previous projects. Our

quality model is similar to the goal graphs of, for instance,
[7], but emphasizes dependencies, and distinguishes be-
tween different types of QAs. Figure 4 gives an example
for such a quality model for the QA “efficiency”.

In Figure 4, QAs are represented by white rectangles.
Grey rectangles are means that have influence on the re-
lated QA and ovals are metrics to measure the related
quality attribute. There are five different types of QAs in
this quality model (see also metamodel):
• General QAs such as “Time Behaviour” are used to

structure the QAs on lower levels.

• Organizational QAs, such as “Experience”, concern
the organizational aspects. This also includes devel-
opment process related aspects, such as required
documentations, reviews, etc.

• System QAs, such as “Capacity”, are QAs related to
the system and its subsystems (e.g., related to the data-
base, secondary storage or network).

• User Task QAs, such as “Usage Time”, are related to
tasks the system and the user are involved.

• System Task QAs, such as “Response Time”, are re-
lated to system tasks, i.e., tasks that are carried out by
the system, not including the user any more (e.g., cal-
culation of results).

Only the latter four QAs are constraint by NFRs. The first
type of QA serves as a structuring for the hierarchical de-
composition of the more fine-grained QAs. This structure
is also used for the template for documenting the NFRs.
How the NFRs for the QAs are elicited, depends on the
type of the QA they constrain. This is described in Section
3.

Four types of relationships can be found in such a quality
model that relates the various kinds of QAs, means and

Figure 4: Quality model for efficiency

Efficiency
ComplianceTime Behaviour

Throughput
(network)

Response Time

Resource
Utilisation

Capacity

Workload
Distribution

Type and position
of devices

Boot / Start Time Workload

LocalityParallelism

Load Balancing

Mbit/sec. #jobs
/ time unit

% of resource
consumption

Cost /
unit

ExperienceRequired
Documentation

Efficiency

% of resource
consumption

Usage Time

Quality Attribute

Quality Attribute

Quality Attribute

System
Quality Attribute

System Task
Quality Attribute

User Task
Quality Attribute

Quality Attribute
Developer View

Metric

Means

Quality Attribute
Customer View

Quality Attribute Organization
Quality Attribute

metrics. The metamodel in Figure 2 describes the general
types of relationships.
• A QA, such as “efficiency”, is refined into more de-

tailed QAs, such as “time behaviour” and “resource
utilization”.

• A means has influence on a QA, i.e., it is used to
achieve the NFRs constraining the QA. “Load balanc-
ing”, for example, is influencing “workload distribu-
tion” and used to achieve the constraining NFRs (e.g.,
“The workload for computing the results must be
equally distributed on the two processors”).

• A QA is measured by a metric. The “workload” can,
for example, be measured by the metric “number of
jobs per time unit”.

• A QA can be positively or negatively influenced by
another QA. If the “workload”, for instance, is higher,
the “response time ” will increase (negative influence).

Our approach provides a default quality model that can be
used without adaptations by a company. Reasons for do-
ing so can be a lack of time or money. We recommend
tailoring the quality model to the context of each company
and project. In addition, a company might have an own
quality model that shall be used. In this case, it is very im-
portant to agree on the meaning of the different QAs in the
quality model. Our recommendation is to build a quality
model together with the company in a workshop. By doing
so, the quality model benefits from the already integrated
experience of our reference quality model and it is tailored
to the project and company.

Exp.Based
Quality
model

Identify
dependencies

Reference
model

Check
list

Derive
facilities

Template

Tailor
Quality
Model

Figure 5: Experience based creation of a quality model

Figure 5 describes the process of tailoring the quality
model to the project and company. The tailored quality
model (experience based quality model) is used as input to
develop checklists and templates for documenting NFRs.

The structure of the checklists is given by the hierarchy of
the quality model. General QAs (e.g., time behaviour)
are, therefore, a means for structuring the checklist, while
the QAs at the lowest level (e.g., usage time) are directly
used to elicit the NFRs constraining them. The type of the
QA influences the way the questions in the checklist are
phrased:

• Organizational QAs are used in initialization check-
lists that focus at general aspects in contrast to the
concrete system or its task.

• User task QAs are iterated over the use cases (e.g., use
case 1, then use case 2)

• System task QAs are iterated over the use case steps
(e.g., step 1, then step 2)

• System QAs are iterated over the various subsystems
in the system (e.g., database first, then network1)

The structure of the template is also strongly influenced
by the quality model. The NFRs constraining the different
types of QAs are denoted at different places in the tem-
plate:
• NFRs constraining the organizational QAs are docu-

mented in an organizational requirements section.

• NFRs constraining user task QAs are attached to the
use case diagrams and are, therefore, documented in a
use case diagram section.

• NFRs constraining system task QAs are directly at-
tached to each use case in the textual use case descrip-
tion section. Therefore, the use cases have a field
“NFRs”, where each system task oriented QA is listed.
Below such a system task oriented QA, there is a list
of the use case steps that express system tasks (e.g., re-
sponse time: step2, step4). The NFRs for each system
task are then expressed at this use case step (e.g., re-
sponse time: step2 - “The system has to respond within
2 seconds”, step4 - “…”).

• NFRs constraining system QAs are denoted at two
places in the template. First, if a NFR constrains a sys-
tem QA of a subsystem (e.g., “the database has to store
100000 entries”) that is used in a use case, the NFR is
attached to that use case. Therefore, each use case also
includes a list of system QAs in the field NFRs. Below
such a system QA, there is a list of all subsystems
(e.g., capacity: database, memory). The NFRs for each
subsystem are then expressed at this subsystem (e.g.,
capacity: database – “the system has to store 100000
entries”, memory – “…”). Second, the system NFRs
are documented in the section of task overspanning
NFRs. The structure is similar to the structure in the
use cases (i.e., there is a list of all system QAs, below
each system QA there is a list of all subsystems), but it
aggregates the NFRs from all use cases and the ones
that are not specific for one use case. This is done be-
cause a consolidation step searches for dependencies
between NFRs concerning one subsystem.

3. The elicitation process
As a result of the process “derive facilities” described
above, the requirements template is created. Figure 6
shows a subset of this template.

1. Organizational requirements
1.1. Process requirements
1.2. Stakeholder requirements

2. Task descriptions
2.1. UC diagram
2.2. Textual UC description

3. Task overspanning requirements
3.1. Textual description of Task overspanning NFR´s

Figure 6: Subset of the requirements template

The elicitation process is guided by our experience that
various entities (e.g., user task, system task) have different
types of QAs. Each NFR has to be elicited under consid-
eration of this entity. In addition, if an entity is described
by one or a set of documentation elements (e.g., a user
task is described by a use case, a system task is described
by a step of a use case), the NFR has to be documented
together with this entity.

In the following sections, we describe the activities to be
performed within the elicitation process. We use examples
from a case study that deals with a mobile and interactive
application. The application allows users to monitor pro-
duction activities, manage physical resources, and access
information. This case study is based on a real system and
was provided by Siemens in the context of the Empress
project.

3.1. Prerequisites
The elicitation process is based upon the documentation
of
• the systems functionality (behavior) described by use

cases (Ucs),

• the physical architecture, if available, and further im-
plementation constraints (e.g. constrained HW-
resources or constraints derived from the operating
systems), and

• assumptions about the average and the maximum
amount of data used in the system. The amount of data
for each use case is determined under consideration of
the amount of data for the entire system.

Since some activities of the elicitation and documentation
process are closely related to the functionality, the com-
pleteness of the NFRs is limited by the completeness of
the FRs.

As described above, some of the QAs are associated to
user tasks and system tasks. Therefore, we recommend use

cases to describe the FRs. This seems to be beneficial, be-
cause QAs associated to user tasks can directly be related
to use cases. QAs associated to system tasks can directly
be related to use case steps. However, we believe that our
approach can be applied to other notations as well.

Figure 7 shows the pre-required documents and the activi-
ties to create them.
• Activities “Prioritize” and “Chose quality models”:

Many times, budget and time limitations oblige to pri-
oritize and select a subset of high-level QAs most im-
portant for a project. This activity is supported by a
prioritisation questionnaire developed at IESE. It
builds a ranking order for the QAs described in ISO
9126 (e.g., maintainability, efficiency, reliability, and
usability). The questionnaire is described in more de-
tail in [6]. Based on this ranking order, quality models
for certain high-level QAs relevant for the project can
be chosen.

• Activity “Elicit FRs”: In this step, the FRs are elicited
and documented in form of a graphical use case-
diagram. Each use case included in the diagram is later
associated to NFRs that constrain QAs of user tasks. In
addition, each use case is described textually. The tex-
tual description includes an interaction sequence be-
tween actor and system. This description allows us
later to associate NFRs that constrain QAs of system
tasks to use case steps.

Project
Quality
models

Sys
Arch

UC Data assum.

Worst
case

Average
case

UC Data assum.

Worst
case

Average
case

4. Define
Scenarios

overall

Data assumption

Worst
case

Average
case

Data assumption

Worst
case

Average
case

5. Define
Scenarios
each UC

UC

UC
diagram

Txt UC
Description

UC

UC
diagram

Txt UC
Description

2. Choose
Quality
models

Priorit
ization

list

1. PrioritizeQuest
ionnaire

6.Describe
Phys.

Sys. Arch.

3.
Elicit funct.

Req´s

Template

Figure 7: Development of prerequisites

• Activities “Define scenarios” and “Define scenarios
for each UC”: In order to be able to imagine NFRs,
maximum and average usage data for the overall sys-
tem, as well as for each use case are elicited and docu-
mented.

• Activity “Describe physical system architecture”:
Some NFRs can only be elicited if the detailed physi-
cal system architecture is known. So the architecture

must be elicited and documented, whenever it is avail-
able.

3.2. Elicitation and documentation of NFRs
Figure 8 shows the activities and documents needed to
elicit and consolidate NFRs. A checklist that is derived
from the quality model as described in Section 2.2 guides
each activity. Activities are explained in more detail in the
following. We distinguish between different elicitation
activities: user task NFR elicitation, system task NFR
elicitation and system NFR elicitation. Each activity fo-
cuses on eliciting NFRs that constrain one certain type of
QA (i.e., organization QA, user task QA, system task QA,
and system QA). The user task NFR elicitation is based on
use cases. The system task NFR elicitation is based on the
interaction sequence described for each use case. The sys-
tem NFR elicitation is based on physical subsystems and
interaction sequences.

Activity “Elicit organizational NFRs”

In this activity, NFRs are elicited that constrain QAs of
the organization. The customer, for example, might have
certain requirements concerning the organizational struc-
ture and experience of a supplier. The customer is asked
to phrase these requirements. This process is guided by a
set of clues in form of a checklist. These clues suggest
thinking about domain-experience, size, structure or age
of the supplier organization, as well as required standards
(e.g. RUP), activities (e.g. inspections), documents or no-
tations (e.g. statecharts). In our case study, some of the
requirements phrased were:
• “The supplier needs at least three years of experience

in the domain of access-control.“

• “The supplier has to create a specification document.”

Txt
Description
UC oversp

NFR´s

Stake-
holderProcess Stake-
holderProcess

System
Architecture

4. Elicit
System
NFR´s

UC Scenarios

Worst
case

Average
case

UC Scenarios

Worst
case

Average
case

Refined
UC

diagram

Txt UC
Descr.

Of NFR´s

Refined
UC

diagram

Txt UC
Descr.

Of NFR´s

UC

UC
diagram

Txt UC
Description

UC

UC
diagram

Txt UC
Description

System
task

QA´s

User
task

QA´s

System
QA´s

Dependencies
Between

QAs
Consolidate

Orga
QA´s

3. Elicit
System task

NFR´s

2. Elicit
User task

NFR´s

1. Elicit
Orga

NFR´s

Check
List 2

Check
List 3

Check
List 4

Check
List 1

Check
List 5

Figure 8: Elicitation process for NFRs

To avoid unnecessarily design decisions, the customer is
instructed to scrutinize this NFR again, just as Socrates
used to try to get to the bottom of statements over and
over. This form of Socratic dialogue serves to uncover the
rationale behind that NFR and bewares the customer from
constraining the system unnecessarily. NFRs are reformu-
lated until they reflect the rationale. It is a good practice to
document the rationale as well [18].

As soon as the now elicited and justified NFRs are
phrased in a measurable way (this is the case if the metric
attached to the QA in the quality model can be applied to
the requirement), it is documented in the chapter “organ-
izational requirements” of the template.

Activity “Elicit user task NFRs”

In this activity, NFRs are elicited that constrain QAs of
user tasks. In our case study, the QA “usage time” in-
cluded in the quality model is a user task QA. These QAs
are documented for each use case included in the use case
diagram, because each use case represents a user task. As
shown in Figure 9, NFRs are added to use cases with the
help of notices.

In our case study the requirement “the use case shall be
performed within 30 min.” was attached to the use case
“Handle alarm”. Again, a justification as described above
is performed to prevent unnecessary anticipated design
decisions. The resulting rationale “breakdown of plant
longer than 30 min. is too expensive” is documented in
parenthesis behind the NFR.

Figure 9: Use cases with attached user task NFRs

Activity “Elicit system task NFRs”

In this activity, NFRs are elicited that constrain QAs of
system tasks. The elicitation is based on the detailed inter-
action sequence (also called flow of events) documented
in the use case. For this activity, maximum and average
usage data (Figure 7 shows the development process of
this information) are needed. The checklist gives clues of
thinking of scenarios where the maximum and the average
amount of data are processed in the system. With these
scenarios in mind, every step and every exception de-
scribed by the use case description are checked. Elicited
NFRs are documented. Figure 10 shows the textual de-

scription of the use case “handle alarm”. It describes that
the system shows an alarm and where the alarm was pro-
duced. As reaction to this, the user acknowledges the
alarm, so other users know s/he is taking care of it.

Figure 10: UC steps with attached system task NFRs

As a result of the elicitation and documentation process,
NFRs that constrain the system task QA “response time”
were documented. The NFR “at least in 5 sec.” was at-
tached to the use case step 2 “System shows alarm and
where the alarm was produced” and the NFR “just one
click” was attached to the users reaction described in use
case step 3. Both requirements were documented in the
NFRs field within the textual description of the use case,
after being justified by the customer in the Socratic dia-
logue. The rationale lead to the statement, that the NFRs
elicited were assumed times only and could be changed, if
necessary. As shown in figure 10, the rationale was docu-
mented in parenthesis.

Activity “Elicit system NFRs”

In this activity, NFRs are elicited that constrain QAs of
the system and subsystems. In this activity, again maxi-
mum and average usage data is needed. Additionally, the
architecture of the physical subsystems is used, if avail-
able. The subsystems and architecture constraints on our
case study are shown in Figure 11.

Figure 11: Constraints on system-architecture

 The checklist gives instructions on how to consider the
scenarios while phrasing NFRs for each use case descrip-
tion and physical subsystem of the system architecture. As

Figure 12 shows, the NFR field of the use case description
is segmented into NFRs related to every physical subsys-
tem.

Figure 12: UC with attached system NFRs

In the use case “handle alarm”, NFRs for the QA “capac-
ity” could only be phrased for the physical subsystem
“PDA”. The subsystem shall have a maximum capacity of
64 MB and shall be able to handle up to 50 alarms at the
same time. The rationale for this NFR is the need for us-
age of standard components available at the consumer
market. This rationale is documented as well.

 The QA “throughput” does only apply to the subsystem
“Network” by definition. Our experience shows, that some
QAs are related to only a subset of subsystems. This rela-
tionship is documented in the quality model.

The elicited NFRs for single subsystems are documented
within the textual use case description as well as in the
section “use case overspanning textual description of
NFRs”. This is done to be able to consolidate the re-
quirements over several use cases.

Activity “Consolidate”

In this activity, the NFRs are analysed for conflicts. This
activity includes two sub-activities. In the first, NFRs for
one physical subsystem are analysed over all use cases.
The checklist gives hints on how to identify conflicts and
how to solve them. It has to be checked, for example,
whether NFRs can be achieved if use cases are executed
in parallel. In the second sub-activity, NFRs that constrain
different QAs are validated under consideration of the de-
pendencies documented within the quality model.

The consolidation activity discovered an important con-
flict between the determined throughput requirements and
the defined hardware constraints. As shown in figure 12
one of the throughput requirements stated:
• “The network between secondary database and PDA

shall be able to deal in worst case with 8 people that
download 1 doc (size of 8 docs constrained to
<55Mbit) / person within 5-10 secs.”

The restriction of the total size of 8 documents to 55
Mbits was added because the hardware constraints shown

in Figure 11 constrained the network to a 11Mbit/sec
WLAN. The additional requirement would not been found
without the consolidation activity.

4. Experience
We have used this approach so far in a case study with
Siemens in the Empress project and in a workshop with 10
practitioners. In the case study, we spent half a day with
the customer in discussing and tailoring the default quality
model to the case study project and half a day in eliciting
the NFRs. The customer acknowledged that the time was
very worthwhile as he discovered many new NFRs he had
not been aware of before. Also, it helped him to specify
them more precisely. In the workshop, we spent one hour
explaining our method and then within another two hours
we interactively went through the checklists and filled the
template. Again, the feedback was very positive as the
participants acknowledged that this was the first system-
atic method they had seen to elicit efficiency NFRs. They
particularly liked the idea of the quality model, checklists,
and template to capture experience on NFRs. In addition,
they liked the use of use cases and the architecture to en-
sure completeness and ease traceability. They also pointed
out the need for capturing the rationale and a supporting
tool environment.

5. Related work
At last years’ REFSQ we presented the following chal-
lenges for a method for the integrated elicitation and
specification of FRs, NFRs and AOs [1]:
• Issue 1: Adequate abstraction levels for the elicitation

and alignment of FR, NFR and AOs

• Issue 2: Views of different stakeholders in the elicita-
tion of NFRs, FRs and AOs

• Issue 3: Identification of dependencies among FRs,
NFRs and AOs

• Issue 4: Compact description of the solution space

In this paper, we concentrate on the first two issues The
quality model contains abstract descriptions of NFRs (in
terms of QAs) and AOs (in terms of means). Thus, to
solve issue 1, we provide two main levels of abstraction.
Within the quality model, QAs are refined on as many lev-
els as necessary to distinguish different aspects. With
respect to issue 2 (views), we distinguish developer and
customer view. We do no support negotiation explicitly.
However, by providing a standardized terminology in
terms of the quality model, we help reducing conflicts and
misunderstanding. The checklists make sure that all rele-
vant aspects are considered.

We also give some hints on how to deal with issue 3 and
4. For dependencies again the quality models helps iden-

tifying typical dependencies. This is elaborated in the
checklists. With respect to issue 4 (assessment), we use
rationale techniques to capture decision making. The
framework for the full-fledged method is described in [6].
The main achievement of this paper is a detailed descrip-
tion of the elicitation of efficiency requirements with the
help of the checklists.

Further related work can be found in the communities of
requirements engineering, architecture design and per-
formance engineering:

Within requirements engineering, [10] provides a general
method for specifying NFRs. It also gives specific advise
for how to capture performance requirements with goal
graphs. However, the emphasis is on the satisfycing step
where means are elicited to achieve performance. In con-
trast, we focus on using use cases to elicit the customer
view. [11] seems to be most similar, since it also com-
bines use cases and NFRs. There are, however, essential
differences. While we focus on elicitation of NFRs, Cys-
neiros and Leite focus on satisfycing NFRs. This term was
coined in [10] to describe the fact that NFRs are not satis-
fied, but there are several ways to achieve them. Thus, in
[11] use cases and NFRs are elicited separately and then
combined to make sure that the use cases satisfice the
NFRs. For example, because of an NFR new functionality
is added into the use case diagram or into the steps of the
use case description. In contrast, we use the use cases to
elicit measurable NFRs. The same comment applies to
[12] which also relates use cases and NFRs after both
have been elicited. Furthermore, they only use high-level
quality attributes, such as efficiency.

As exemplified by last years STRAW workshop, in the
architecture community several approaches rely on goal
graphs for specifying NFRs and FRs and their dependen-
cies. [2][13][14][15]0. In these approaches, the graph cap-
tures the actual FRs and NFRs. In contrast, we only use
the graph to represent dependencies between quality at-
tributes and we place the NFRs in the template.

In the performance community it is emphasized, that per-
formance issues are not suitably integrated in regular
software engineering processes[16]. This is attributed to
education issues, single-user and small database mindsets
and in particular, lack of scientific principles and models.
The main emphasis of this community is to create just
these models, e.g., queuing models. So, for example [17]
also uses use cases in the representation of use case maps
in combination with efficiency NFRs. As for [11], how-
ever, it is already presupposed that the NFRs have been
elicited adequately. The main emphasis is then to create a
queing network reflecting the paths of the use case maps
and the NFRs.

6. Conclusion
In this paper, we have presented an approach for eliciting
and documenting efficiency requirements in concert with
use cases and a high-level architecture. There are two ma-
jor innovations. One is the use of a quality model and
quality attribute types to capture general knowledge on
NFRs, while specific NFRs are captured in a template.
The other are detailed checklists on how to elicit NFRs in
concert with use cases and architecture. With this ap-
proach, we achieve a minimal, complete and focused set
of measurable and traceable NFRs. There is first evidence
from practitioners that this approach is worthwhile.

While so far we have concentrated on efficiency, we be-
lieve that this approach can be generalized to other high-
level quality attributes, such as reliability or maintainabil-
ity. This is because of the use of our meta model and our
quality model. We assume that the defined concepts, such
as the different types of QAs, metrics, and means can be
applied to other high-level quality attributes as well. The
main open question is whether the distinction between
task and system-oriented QAs also gives helpful guidance
for eliciting specific NFRs for other quality attributes.
This question is the focus of our current work. After that,
we will continue working on the other issues mentioned
above, for example, notations that support the identifica-
tion of dependencies between NFRs.

7. Acknowledgements
We thank our colleagues for fruitful discussion within the
IESE_Empress-Team. We acknowledge the ITEA project
EMPRESS for partly funding our research. Furthermore,
we want to thank all partners in the ITEA project EM-
PRESS that contributed to our research. In particular, we
want to thank Ricardo Jimenez Serrano (Siemens) for
providing a case study to validate our approach and for
taking over the role of the customer.

References
[1] . B. Paech, A. Dutoit, D. Kerkow, A. von Knethen:
„Functional requirements, non-functional requirements
and architecture specification cannot be separated – A po-
sition paper”, REFSQ 2002
[2] In, H., Boehm, B.W., Rodgers, T., Deutsch, W., "Ap-
plying WinWin to Quality Requirements: A Case Study",
ICSE 2001, pp. 555-564, 2001
[3] Cockburn A., Writing Effective Use Cases, Addison
Wesley 2001
[4] Shaw, M., Garlan, D., “Software Architecture – Per-
spectives on an emerging discipline” Prentice Hall, 1996
[5] IEEE Recommended Practice for Software Require-
ments Specifications, IEEE Std. 830-1998
[6] Paech, B., von Knethen, A., Doerr, J., Bayer, J., Ker-
kow, D., Kolb, R., Trendowicz, A., Punter, T., Dutoit, A.,

„An experience based approach for integrating archiecture
and requirements engineering “, accepted for ICSE-
workshop STRAW 2003
[7] ISO/IEC 9126-1:2001(E), “Software Engineering -
Product Quality - Part 1: Quality Model”, 2001
[8] von Knethen, A., Paech, B., Houdek, F., Kiediasch,
F., “Systematic Requirements Recycling through Abstrac-
tion and Traceability”, RE 2002
[9] Trochim, W. M. K., “The Research Methods Knowl-
edge Base”, Atomic Dog Pub Inc., Cincinnati, 2001
[10] Chung, L., Nixon, B.A., Yu, E., Mylopoulos,
J.,“Non-Functional Requirements in Software Engineer-
ing”, Kluwer Academic Publishers, 2000
[11] Cysneiros, L.N., Leite, J.C.S.P, “Driving Non-
Functional Requirements to Use Cases and Scenarios”,
XV Brazilian Symposium on Software Engineering, 2001
[12] Ana Moreira, Isabel Brito, João Araújo, "A Re-
quirements Model for Quality Attributes", Early Aspects:
Aspect-Oriented Requirements Engineering and Architec-
ture Design, workshop da 1st International Conference on
Aspect-Oriented Software Development, University of
Twente, Enschede, Holland, 22-26 April , 2002
[13] In, H., Kazman, R., Olson, D., From requirements
negotiation to software architectural decisions, STRAW
2001
[14] Egyed, A., Grünbacher, P., Medvidovic, N., refine-
ment and evolution issues in bridging requirements and
architecture – the CBSP approach, STRAW 2001
[15] Liu, L., Yu, E., From requirements to architectural
design – using goals and scenarios, STRAW 2001
Gross, F., Yu, E., Evolving system architecture to meet
changing business goals: an agent and goal-oriented ap-
proach, STRAW 2001
[16] Menasce, D.A., “Software, Performance or Engineer-
ing”, Workshop on Software and Performance, pp. 239-
242, 2002
[17] Petriu, D., Woodside, M., “Analysing Software
Requirements Specifications for Performance”, Workshop
on Software and Performance, p.1-9, 2002
[18] A. H. Dutoit, B. Paech, “Rationale Management in
Software Engineering. In: S.K. Chang (Ed.), “Handbook
of Software Engineering and Knowledge Engineering.
World Scientific, December 2001.

